13 research outputs found

    Endothelial–Vascular Smooth Muscle Cells Interactions in Atherosclerosis

    Get PDF
    Atherosclerosis is a chronic progressive inflammatory process that can eventually lead to cardiovascular disease (CVD). Despite available treatment, the prevalence of atherosclerotic CVD, which has become the leading cause of death worldwide, persists. Identification of new mechanisms of atherogenesis are highly needed in order to develop an effective therapeutic treatment. The blood vessels contain two primary major cell types: endothelial cells (EC) and vascular smooth muscle cells (VSMC). Each of these performs an essential function in sustaining vascular homeostasis. EC-VSMC communication is essential not only to development, but also to the homeostasis of mature blood vessels. Aberrant EC-VSMC interaction could promote atherogenesis. Identification of the mode of EC-VSMC crosstalk that regulates vascular functionality and sustains homeostasis may offer strategic insights for prevention and treatment of atherosclerotic CVD. Here we will review the molecular mechanisms underlying the interplay between EC and VSMC that could contribute to atherosclerosis. We also highlight open questions for future research directions

    A catalogue of structural and morphological measurements for DES Y1

    Get PDF
    We present a structural and morphological catalogue for 45 million objects selected from the first year data of the Dark Energy Survey (DES). Single Sersic fits and non-parametric ´ measurements are produced for g, r, and i filters. The parameters from the best-fitting Sersic ´ model (total magnitude, half-light radius, Sersic index, axis ratio, and position angle) are mea- ´ sured with GALFIT; the non-parametric coefficients (concentration, asymmetry, clumpiness, Gini, M20) are provided using the Zurich Estimator of Structural Types (ZEST+). To study the statistical uncertainties, we consider a sample of state-of-the-art image simulations with a realistic distribution in the input parameter space and then process and analyse them as we do with real data: this enables us to quantify the observational biases due to PSF blurring and magnitude effects and correct the measurements as a function of magnitude, galaxy size, Sersic ´ index (concentration for the analysis of the non-parametric measurements) and ellipticity. We present the largest structural catalogue to date: we find that accurate and complete measurements for all the structural parameters are typically obtained for galaxies with SEXTRACTOR MAG AUTO I ≤ 21. Indeed, the parameters in the filters i and r can be overall well recovered up to MAG AUTO ≤ 21.5, corresponding to a fitting completeness of ∼90 per cent below this threshold, for a total of 25 million galaxies. The combination of parametric and non-parametric structural measurements makes this catalogue an important instrument to explore and understand how galaxies form and evolve. The catalogue described in this paper will be publicly released alongside the DES collaboration Y1 cosmology data products at the following URL: https://des.ncsa.illinois.edu/releases

    VDES J2325−5229 a z = 2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning

    Get PDF
    We present the discovery and preliminary characterization of a gravitationally lensed quasar with a source redshift zs = 2.74 and image separation of 2.9 arcsec lensed by a foreground zl = 0.40 elliptical galaxy. Since optical observations of gravitationally lensed quasars showthe lens system as a superposition of multiple point sources and a foreground lensing galaxy, we have developed a morphology-independent multi-wavelength approach to the photometric selection of lensed quasar candidates based on Gaussian Mixture Models (GMM) supervised machine learning. Using this technique and gi multicolour photometric observations from the Dark Energy Survey (DES), near-IR JK photometry from the VISTA Hemisphere Survey (VHS) and WISE mid-IR photometry, we have identified a candidate system with two catalogue components with iAB = 18.61 and iAB = 20.44 comprising an elliptical galaxy and two blue point sources. Spectroscopic follow-up with NTT and the use of an archival AAT spectrum show that the point sources can be identified as a lensed quasar with an emission line redshift of z = 2.739 ± 0.003 and a foreground early-type galaxy with z = 0.400 ± 0.002.We model the system as a single isothermal ellipsoid and find the Einstein radius θE ∼ 1.47 arcsec, enclosed mass Menc ∼ 4 × 1011 M and a time delay of ∼52 d. The relatively wide separation, month scale time delay duration and high redshift make this an ideal system for constraining the expansion rate beyond a redshift of 1

    Host galaxy identification for supernova surveys

    Get PDF
    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey

    Candidate Massive Galaxies at z~4 in the Dark Energy Survey

    Get PDF
    Using stellar population models, we predicted that the Dark Energy Survey (DES) - due to its special combination of area (5000 deg. sq.) and depth (i=24.3i = 24.3) - would be in the position to detect massive (1011\gtrsim 10^{11} M_{\odot}) galaxies at z4z \sim 4. We confront those theoretical calculations with the first 150\sim 150 deg. sq. of DES data reaching nominal depth. From a catalogue containing 5\sim 5 million sources, 26000\sim26000 were found to have observed-frame grg-r vs rir-i colours within the locus predicted for z4z \sim 4 massive galaxies. We further removed contamination by stars and artefacts, obtaining 606 galaxies lining up by the model selection box. We obtained their photometric redshifts and physical properties by fitting model templates spanning a wide range of star formation histories, reddening and redshift. Key to constrain the models is the addition, to the optical DES bands gg, rr, ii, zz, and YY, of near-IR JJ, HH, KsK_{s} data from the Vista Hemisphere Survey. We further applied several quality cuts to the fitting results, including goodness of fit and a unimodal redshift probability distribution. We finally select 233 candidates whose photometric redshift probability distribution function peaks around z4z\sim4, have high stellar masses (log(\log(M^{*}/M)11.7_{\odot})\sim 11.7 for a Salpeter IMF) and ages around 0.1 Gyr, i.e. formation redshift around 5. These properties match those of the progenitors of the most massive galaxies in the local universe. This is an ideal sample for spectroscopic follow-up to select the fraction of galaxies which is truly at high redshift. These initial results and those at the survey completion, which we shall push to higher redshifts, will set unprecedented constraints on galaxy formation, evolution, and the re-ionisation epoch

    Core or Cusps:The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1

    Get PDF
    We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z=1.06z=1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman Break galaxy at zs=2.39z_s=2.39 and the mass enclosed within the 14 arc second radius Einstein ring is 1014.210^{14.2} solar masses. We perform a full light profile reconstruction of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro-Frenk-White profile---with a free parameter for the inner density slope---we find that the break radius is 27076+48270^{+48}_{-76} kpc, and that the inner density falls with radius to the power 0.38±0.04-0.38\pm0.04 at 68 percent confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter only simulations predict the inner density should fall as r1r^{-1}. The tension can be alleviated if this cluster is in fact a merger; a two halo model can also reconstruct the data, with both clumps (density going as r0.8r^{-0.8} and r1.0r^{-1.0}) much more consistent with predictions from dark matter only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.Comment: 13 Pages. Accepted for publication in Ap
    corecore