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Atherosclerosis is a chronic progressive inflammatory process that can eventually

lead to cardiovascular disease (CVD). Despite available treatment, the prevalence of

atherosclerotic CVD, which has become the leading cause of death worldwide, persists.

Identification of new mechanisms of atherogenesis are highly needed in order to

develop an effective therapeutic treatment. The blood vessels contain two primary major

cell types: endothelial cells (EC) and vascular smooth muscle cells (VSMC). Each of

these performs an essential function in sustaining vascular homeostasis. EC-VSMC

communication is essential not only to development, but also to the homeostasis of

mature blood vessels. Aberrant EC-VSMC interaction could promote atherogenesis.

Identification of the mode of EC-VSMC crosstalk that regulates vascular functionality

and sustains homeostasis may offer strategic insights for prevention and treatment

of atherosclerotic CVD. Here we will review the molecular mechanisms underlying the

interplay between EC and VSMC that could contribute to atherosclerosis. We also

highlight open questions for future research directions.

Keywords: atherosclerosis, cardiovascular disease, cell interactions, endothelial cells, vascular smooth muscle

cells

INTRODUCTION

Atherosclerosis, or hardening of the atrial blood vessel wall, is a chronic progressive inflammatory
disorder. The disorder presents with coronary artery disease, carotid artery disease, peripheral
artery disease, or combined, cardiovascular disease (CVD) (1).With life-threatening complications,
including myocardial infarction and stroke, CVD is the leading cause of death worldwide.
Despite available treatments, CVD prevalence continues, suggesting an urgent need to identify
the pathogenic molecular mechanisms and develop effective therapeutic approaches. Blood vessel
walls are comprised primarily of endothelial cells (EC) and vascular smooth muscle cells (VSMC).
Each cell type has an important role in vascular homeostasis. Interaction between these two major
cell types is fundamental not only to the development and formation of the vasculature, but also
to the function of mature vasculature (2), such as maintaining vessel tone in mature vessels.
Their communication is critical for repair and remodeling associated with blood vessel growth.
A Compendium on Atherosclerosis (3) recently provided comprehensive reviews on the roles of
ECs (4) and VSMCs (5) in the pathological progression of atherogenesis. However, the modes and
molecular mechanisms of the EC-VSMC conversation that causes atherosclerosis are less known.
Identification of the pathways underlying EC-VSMC interaction-mediated vascular homeostasis
in the course of atherogenesis can offer strategic insights for the prevention and treatment of
atherosclerotic CVD. While general functions of individual ECs and VSMCs have been extensively
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reviewed elsewhere, the present review summarizes the emerging
evidence that connects physical (direct) and biochemical
(indirect) crosstalk between ECs and VSMCs to atherogenesis,
and highlights the unanswered questions that merit future
investigations.

ROLES OF EC AND VSMC IN
ATHEROSCLEROSIS

Atherosclerotic lesion formation is a complex process,
with initiation and progression dependent on a localized
inflammatory response that facilitates changes in the vessel
wall (6, 7). Fatty streaks in arterial walls gradually develop
into atheroma and characteristic plaques. The acute rupture of
these atheromatous plaques causes local thrombosis, leading
to partial or total occlusion of the affected artery. The clinical
consequences of these plaques depend on their site and the
degree and speed of vessel occlusion. The disease has a latency of
many years, and frequently coexists in more than one vascular
bed. Its major clinical manifestations include ischemic heart
disease, ischemic stroke, and peripheral arterial disease.

Abnormal heterotypic cell communication can cause vascular
defects (4). A major piece of evidence supporting this notion
is that endothelial dysfunction, a well-defined pathological
state of the endothelium, underlies vascular impairment in
atherosclerosis (8, 9), hypertension, hypercholesterolemia, and
diabetes (10). A detectable change in the vascular reactivity and
composition of the vascular wall is a common feature of these
diseases. It is widely accepted that the effects of endothelial
dysfunction on VSMCs are reduction of NO bioavailability
and/or augmentation of vasoactive constrictors released from the
endothelium (8, 9). Endothelial dysfunction has been positively
associated with the pathology of metabolic disorders and the
related vascular complications (10, 11). VSMCs, another major
type of vascular cell, play a crucial role in the initiation and
development of atherosclerosis (6). Mechanistically, normal and
controlled VSMC proliferation is beneficial in atherogenesis,
while dysregulated VSMC proliferation contributes to plaque
formation and aberrant inflammation (5, 12). Thus, endothelial
dysfunction contributes to impairment of NO-dependent
vasodilatation, cellular glucose uptake, enhanced oxidative
stress, and inflammation, leading eventually to atherosclerosis
(1, 13–16).

MODES OF EC-VSMC INTERACTIONS IN
ATHEROSCLEROSIS

The individual functions of ECs and VSMCs are dependent on
their proper interaction, which is fundamental to the formation
and function of the vasculature (2). The early interactions begin
at embryogenesis when the blood vessels are forming (2, 17). The
intimate EC-VSMC interaction may also determine the outcome
of vascular homeostasis under diseased conditions, including
atherosclerosis. Great progress has been made in understanding
EC-conveyed signals to SMC regulating vascular tone and the
basic interplay that occurs during vessel assembly. However,

modes of EC-VSMC communication in adults can be very
different from those in developing humans. For vessel assembly,
the proliferation and migration of adult EC-VSMC cells are less
dynamic. Moreover, physical interactions of EC-VSMC might
be blocked by the basement membrane and the internal elastic
lamina in mature blood vessels. ECs and VSMCs have evolved
various modes of interaction to regulate vascular function and
sustain homeostasis. Although it remains largely unclear how
defects in EC-VSMC interaction could lead to atherosclerosis, an
overview of the mode of EC-VSMC interaction is timely and will
help to identify key outstanding problems.

EC-VSMC INTERACTION VIA DIRECT
CONTACT

EC-VSMC interaction via direct contact, which has contributed
to arterial-venous identity, vascular tip cell specification and
sprouting, and VSMC differentiation in vascular development,
occurs in embryonic growth (2). In adult vasculature, junctional
molecules, such as intercellular adhesion molecules, mediate
most of the direct contact between vascular cells (18) N-cadherin,
which was believed to mediate EC-VSMC physical adhesion, was
found in layers of ECs and VSMCs beneath the internal elastic
membrane in adult vasculature (19). Connexins are the next
regulator of EC-VSMC interaction in adult blood vessels (20).
Connexin 43 post-translational modification by nitrosylation
(21) and phosphorylation (22), respectively, alters vascular
reactivity. Like ECs, VSMCs also express intercellular adhesion
molecule 1 (ICAM-1) and vascular cell adhesion molecule 1
(VCAM-1) in atherosclerosis (23), restenosis (24), and transplant
vasculopathy (25). There are reports of direct communications
between ECs and VSMCs that affect vasculature formation. In
vitro data suggested that EC-expressed Jagged1 could interact
with NOTCH3 on neighboring SMCs, which activated NTOCH
signaling, promoting more NTOCH3 expression in the SMCs
(26). Another example of contact-dependent interplay involves
Ephrin receptor tyrosine kinases (Eph), which are activated by
binding to ephrin ligands that are linked to the cell membrane
via glycosylphosphatidylinisotol anchor (ephrin A) or via a
transmembrane domain (ephrin B) (27). Among well-studied
receptor-ligand pairs (28), a reciprocal interaction of EphB4
and ephrin-B2 from both ECs and VSMCs is required in
growing blood vessels (29). Both ephrin and receptors have been
detected in atherosclerotic plaques (30, 31), indicating a strong
association of these proteins with the inflammatory outcome
in atherosclerosis (32). A causal role of the direct contact in
atherogenesis has yet to be established; however, data for a role
of indirect EC-VSMC interaction are emerging.

EC-VSMC INTERACTION VIA

ENOS-DERIVED NO

While developmental signals are required by mature vessels
for basal function, they rely on further interactions regulating
such vascular functions as vascular tone and blood pressure
(33). These signals operate by employing endothelium-derived
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hyperpolarizing factor (EDHF) (e.g., eNOS-derived NO) and
gap junctions that couple EC-VSMC. Mechanistically, EDHF-
induced hyperpolarizing current spreads quickly, leading to
vasodilatation and thereby increasing blood flow, while small
molecules (e.g., Ca2+) also coordinate changes in diameter and
modulate vascular responses. EC-derived NO has also been
reported to change flow-dependent vascular remodeling by
negatively regulating the platelet-derived growth factor (PDGF)
pathway (34). Moreover, increased myoendothelial junctions
could be a way of enhancing the interaction, as observed
in caudal arteries of spontaneously hypertensive rats (35). In
contrast, pharmacological blocking of myoendothelial GAP-
junction impaired EC-induced contraction (36). These data
suggest EC-mediated SMC hyperpolarization as a mode of EC-
VSMC conversation (37, 38).

EC-VSMC INTERACTION VIA THE
EXTRACELLULAR MATRIX (ECM)

A primary feature of atherosclerotic plaques is a transition state
of VSMCs, which become proliferative and secrete excess ECM
to build up the plaque lesion (6). The ECM was traditionally
regarded as a cellular scaffold or foundation to maintain the
mechanical properties of blood vessels. It is now known as a
source of signaling mediators (39). Alterations in the ECM have
structural implications and signaling changes that disrupt EC-
VSMC interactions. Both ECs and SMCs synthesize and secrete
ECM, which is a complex mixture of components derived from
ECs and VSMCs (39, 40), and could influence the function
of neighboring cells (41). Indeed, interventional angioplasty
to remove diseased plaques may induce EC denudation,
damage, and further dysfunction, attributable to the loss of
the suppressive effects on VSMC proliferation, thereby causing
restenosis (42).

EC-VSMC INTERACTION VIA

EXTRACELLULAR VESICLES

Extracellular vesicles (EVs) are phospholipid bilayer-enclosed
membrane sacs that emerged as a mechanism regulating cell-
cell communication (43). EVs include exosomes, microparticles,
and apoptotic bodies, which carry biomolecules, such as proteins,
DNA, mRNA, and noncoding RNA (44). Under physiological
conditions, ECs constitutively secrete low concentrations of EVs
into the circulation. However, endothelial EV levels increase
under various diseases conditions involving endothelial injury
or dysfunction (45). EC-derived EVs contain proteins with
emerging roles in atherogenesis (43). EVs have been reported
to function in post-plaque rupture responses, which promote
tissue factor, a rate-limiting enzyme, to initiate the coagulation
cascade. Both ECs (46) and VSMCs (47) can release TF-loaded
VEs; however, it remains unknown how EC and VSMC talk
to each other to control the proper release of the same factor.
Notably, one of the cargoes carried by EC-derived EVs is miRNA,
a discussion of which follows below.

EC-VSMC INTERACTION VIA MICRORNAS
(MIRNAS)

MiRNAs are evolutionarily conserved and noncoding small
RNAs. miRNAs are secreted from cells and can be picked
up by other cells (48). MiRNAs function as important
regulators and fine-tuners of a range of pathophysiological
cellular effects and molecular signaling pathways involved in
atherosclerosis (49). Early studies demonstrated that miRNAs
mediate atheroprotective communication between EC-VSMC
(50). A recent study showed that ECs could inform VSMCs
to proliferate via a direct secretion of miR-126 from ECs to
VSMCs (51), which augments VSMC turnover and worsens
atherosclerosis. In line with these findings, atheroprotective shear
stress blocked miR-126 release (51). A similar atheroprotective
effect was observed when EC-derived miR-143/145 were
transferred to VSMCs through an EV-mediated pathway (50).
In this regard, miRNAs function similarly to secreted proteins
and peptides, which have been considered as major regulators for
communication among vascular cells.

EC-VSMC INTERACTION VIA OTHER
FACTORS AFFECTING SMC CELL
TURNOVER

EC-VSMC dialogue can alter developmental signaling pathways
in mature blood vessels. Hemodynamic force stimulates ECs
to produce heparin sulfate proteoglycans, which promote
vascular growth and hypertrophy (52). This was achieved
by enhancing the VSMC response to growth signals from
transforming growth factor beta (TGF-β) (52). Manipulation
of EC can promote excessive VSMC turnover in plaque
formation. The EC injury-activated PDGF signaling pathway is
associated with VSMC proliferation and ECM synthesis (53).
Similarly, loss of EC-expressed Apelin, an endogenous ligand
for G protein–coupled receptors, causes defects in vascular
maturation and VSMC recruitment (54), suggesting an overlap
with the PDGF pathway. In contrast, EC-FGF receptor signaling
accelerates atherosclerosis (55), whereas EC-overexpression
of FasL decreases atherosclerosis in ApoE−/− mice (56).
Homocysteine activates VSMCs by DNA demethylation of
PDGF in ECs (57). Another atheroprotective mode of EC-
VSMC interaction is supported by evidence showing EC-induced
suppression of SMC proliferation and, thus, vascular injury.
These effects have been accomplished with blood vessel re-
endothelialization by blocking cell migration (58) and restenosis
(59), elevating peroxiredoxin activity (60), and inducing VSMC
apoptosis (61), respectively. These data further support the
therapeutic potential of promoting EC regrowth after tissue
damage.

Wnt-signaling is involved in many aspects of the
atherogenesis (62–64) including EC dysfunction (65),
macrophage activation (66), and VSCM proliferation (67).
For example, canonical Wnt/β-catenin pathway regulates VSMC
proliferation and survival via a crosstalk between the Wnt
cascade and NF-κB signaling, mediated through β-TrCP1, an
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E3-ligase (68). Wnt-signaling dependent EC-VSMC interaction,
however, is less known. Recent studies showed that EC-derived
non-canonical Wnt ligand regulated vascular formation in an
autocrine manner (69). In line with these results, enhancement
of Wnt-signaling in ECs through R-spondin3 was required
for vascular stability during vasculature remodeling (70).
Given the EC-VSMC interplay in atherogenesis, components
of the Wnt signaling cascade may represent novel targets for
atherosclerosis (71).

In an analogy to transdifferentiation of VSMCs to
macrophage-like cells during atherogenesis (72), ECs have
been shown to have certain plasticity through interacting
with ECM and/or cues from supporting cells. Indeed,
transdifferentiation of mature vascular ECs has been detected
in pulmonary hypertension, which plays an important role in
pulmonary arterial remodeling (73). This likely happens due to
downregulation of EC-cadherin (74) or regulation by myocardin
in hypoxia-induced pulmonary vascular remodeling (75).
However, the causal role of EC-derived VSMC in atherogenesis,
if any, remains poorly understood (5).

EC-VSMC TWO-WAY INTERACTION

It is widely accepted that EC dysfunction is a leading cause
of atherosclerosis (76). The resultant dysfunctional VSMCs
contribute to atherogenesis (5). Specifically, loss of endothelial
cell function elicits abnormal expression of adhesion proteins
that recruit leukocytes from the blood into vascular tissue,
wherein these cells promote VSMC-mediated vascular wall
remodeling. As such, atherosclerosis is characterized by chronic
vascular wall inflammation, progressive narrowing of the vessel
lumen, and eventual plaque formation. However, EC-VSMC
communication is not unidirectional from blood into the
vascular wall in atherogenesis, or simply from EC to VSMC.
Changes that occur in VSMCs may ultimately affect the other
side of the conversation. In a mouse model of thoracic aortic
aneurysm, elevated endoplasmic reticulum stress in VSMC
stimulated the release of EVs, which contributed to EC apoptosis
and the infiltration of inflammatory cells (77). VSMC-secreted
ECM can buffer the high-pressure load of circulating blood,
which prevents physical EC permeability in large vessels (78).
Given the critical role of the twomajor cell types in atherogenesis,
in-depth studies of the VSMC-derived impacts on ECs in
atherosclerosis, a less-investigated area, should be encouraged.

EC-VSMC INTERACTION: GENETIC
EVIDENCE

Defects in EC-VSMC interactions cause certain genetic diseases.
Cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy (CADASIL) is an inherited
disease caused by NOTCH3 mutations that lead to vascular
dementia and stroke due to SMC degeneration in small arteries
(79). Patients with CADASIL exhibit endothelial dysfunction
(80). Animal models of CADASIL exhibit disruptions in
vascular tone and increased incidence of ischemic stroke

(81, 82). In addition, patients with Marfan syndrome have
defects in the gene encoding ECM protein fibrillin-1, which
cause structural abnormalities of the vessel wall, likely due
to elevated TGF-signaling (83, 84). Endothelium-dependent
vasomotor dysfunction was found in the small arteries of a mouse
model of Marfan syndrome, suggesting defects in heterotypic
cell communication (85). Endoglin is a TGF-β receptor for
the TGF-mediated signaling pathway and is highly expressed
in EC (86). Endoglin mutations cause hereditary hemorrhagic
telangiectasia (HHT), which is an autosomal-dominant disorder.
Patients with HHT manifest with dilations of the vascular lumen
(87) and thinning of blood vessel wall (88), which lead to
arteriovenous malformations and hemorrhage (89). Mutations
in other mediators of TGF-β signaling could induce HHT
(90). Endoglin-KO mice present with defects in EC-dependent
SMC recruitment (91). Interestingly, heterozygous endoglin
mutation has impaired NO-dependent reactivity (92), suggesting
an additional function to maintain vascular tone in mature
vessels.

OUTSTANDING QUESTIONS AND FUTURE
DIRECTIONS

Our understanding of atherogenesis has progressed significantly.
The endothelium is recognized and implicated in the regulation
of physiologic and pathologic processes via its signals and
metabolic cues (93, 94) to their residing organs in development
and function. Loss of endothelial function thus contributes to
CVD (95, 96). This review focuses on EC-VSMC interaction-
promoted atherogenesis, a less-explored, but potentially

FIGURE 1 | Schematic diagram of modes of endothelial cell-vascular smooth

muscle cell interaction that may lead to atherosclerosis. Emerging evidence

demonstrates that both direct and indirect interplay between ECs and VSMCs

are functional. Direct EC-VSMC crosstalk involves physical contact through

cell surface proteins, such as Connexin, Eph/ephrins, and Jagged/Notch3.

Indirect EC-VSMC dialogue is biochemical interaction mediated by

cell-released or secreted factors (e.g., EDHF, EVs, miRNA) and matrix (ECM).

The outcome of the dialogue is expected to alter EC and/or VSMC functions

that promote atherogenesis. Cx, Connexin, or other junction proteins; ECM,

extracellular matrix; ECs, endothelial cells; EVs, extracellular vesicles; miR,

micro-RNA; VSMCs, vascular smooth muscle cells; Wnt, Wnt ligand proteins.
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important, field. The existence of genetic disorders due to
EC-VSMC interaction defects indicates the clinical significance
of the modes of interplay. The reviewed pathways that ECs
and VSMCs use to communicate in vascular functionality
support an essential role for their interaction in atherosclerotic
plaque formation (Figure 1). There are other major cell types
in different stages of atherogenesis. The modes of interaction
may well apply to the dialogue of ECs with other cell types
in atherogenesis. Since a selected pathway or target may have
opposing effects in different cell types, a promising therapeutic
target would promote (net) beneficial outcomes in multiple cell
types. Outstanding questions that warrant future exploration are
listed below.

Endothelial dysfunction ultimately leads to atherosclerotic
CVD. Treatment of endothelial dysfunction has focused
mainly on reducing known CVD risk factors, because this
approach could be associated with improved vascular endothelial
functions (97). However, treatment specifically targeting
the EC-dependent mechanism is not available. Can these
drugs modulate the crosstalk between ECs and VSMC, and
translate to the prevention and treatment of atherosclerosis?
Emerging discoveries, including EC-mediated signaling (98),
EC metabolism (99, 100), EC-mediated re-endothelialization (as
seen in the treatment of stroke) (101), EC-regulated blood flow
sensor function (102), EC-induced metabolic changes (103),
and EC-vascular integrity, may be linked to the EC-VSMC
crosstalk reviewed here (104–107). Could a better and/or more
effective target be identified based on EC-centered mechanisms
for atherosclerosis?

There are challenges to determining an authentic EC-VSMC
interplay that causes vascular injury. The disruptions in signaling
between ECs and VSMCs are difficult to precisely define, due
to the contribution of other cell types, e.g., inflammatory cells,
monocytes, and lymphocytes. An array of approaches from
various perspectives has been reported, e.g., using a co-culture
system to identify contributing cell type (108). using endothelial
dysfunction as an early predictor of vascular cell conversation
(109), text mining to identify genes associated with atherogenesis
(110), and further classifying sub-population(s) of SMCs linking
to their specificity (111). Would systematic consideration and/or
application of these approaches be a better way to identify a causal
role of EC-VSMC interaction in vascular injury?

Vascular cell communication confers on the blood vessel
wall the ability to act as a functional entity. In addition to
ECs and VSMCs, there are other major cell types in different
stages of atherogenesis. The modes of interaction may well apply
to the dialogue of ECs with other cell types, such as effector
macrophages (112) and vascular first responder platelets (113),

which significantly contribute to atherogenesis. Macrophages
are the major and important type of cell that determines the
progression of atherosclerosis by interplay with both ECs (4)
and VSMCs (5). How is EC-VSMC signaling integrated with
macrophages to determine the fate of atherosclerosis?

To date, therapies in the atherosclerosis field have mainly
focused on drugs that control blood lipids (e.g., statins), which
fail to significantly reduce disease prevalence. Anti-inflammatory
strategies targeting macrophages and other immune cells remain

unproven. Can we shift the paradigm to identify the factors
and mechanisms that can promote beneficial vascular cell
interactions, such as those between EC-VSMC, which can either
enhance or replace current conventional anti-atherosclerotic
therapies?

It has been recognized that VSMCs of different embryological
origin may undergo specific processes at different stages and in
different regions of the plaque during atherogenesis (5). These
processes are associated with VSMC phenotypic switching, cell
proliferation, migration, cell death, and cell senescence. What is
the role and mechanism of ECs in these processes that eventually
lead to atherosclerosis?

The impact of sex and gender differences has been widely
described in cardiovascular diseases, including atherosclerosis
(114–116). Although work with most available animal models
(117) cannot address a sex-specific impact in atherogenesis
[e.g., more plaque erosion in younger women (118)], emerging
evidence has shown that sex affects cells that are involved in
atherogenesis in humans (119). What is the role and mechanism
of sex and gender differences in the EC-VSMC interaction that
contributes to atherosclerosis?

In conclusion, atherosclerosis is a chronic arterial disease and
a leading cause of vascular death. Our deeper understanding of
the defects in EC-VSMC interaction that induce atherosclerosis
may allow us to design proper targets for the treatment and
prevention of atherosclerotic CVD.
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