2,163 research outputs found

    Observation of a robust and active catalyst for hydrogen evolution under high current densities

    Get PDF
    Despite the fruitful achievements in the development of hydrogen production catalysts with record-breaking performances, there is still a lack of durable catalysts that could work under large current densities (>1000 mA cm(−2)). Here, we investigated the catalytic behaviors of Sr(2)RuO(4) bulk single crystals. This crystal has demonstrated remarkable activities under the current density of 1000 mA cm(−2), which require overpotentials of 182 and 278 mV in 0.5 M H(2)SO(4) and 1 M KOH electrolytes, respectively. These materials are stable for 56 days of continuous testing at a high current density of above 1000 mA cm(−2) and then under operating temperatures of 70 °C. The in-situ formation of ferromagnetic Ru clusters at the crystal surface is observed, endowing the single-crystal catalyst with low charge transfer resistance and high wettability for rapid gas bubble removal. These experiments exemplify the potential of designing HER catalysts that work under industrial-scale current density

    Verification of the use of micro-CT scanning to assess the features of entire squat type defects

    Get PDF
    Squats and studs are defects in railheads that share features, but have different causes. This paper examined four squat and stud samples from three different traffic environments to compare features using μ-CT X-ray scans, surface and subsurface inspection. μ-CT scanning has been used before as a non-destructive method to investigate rail defects, but not the entire defect. The scans were verified and allowed the identification of areas of interest when sectioning the samples further. The scan volumes were also used to create 3D models of the crack networks for the 3 samples that were scanned. All defects contain similar superficial features but the depth and severity of the subsurface damage varies. This work provides a visualisation of the 3D nature of studs in a way not seen before, as a 3D model the crack network from an in-service defect. The models of two of the defects showed the influence of hollow wheels initiating defects, as the crack seemed to initiate on the field side, grow down and towards the gauge side, before resurfacing as the longitudinal crack noted in all four defect samples. One sample is believed to have initiated due to contamination of the weld and the only squat sample, which failed in track, was believed to be ingot cast steel containing many inclusions. Three samples were studs and one was a squat. Each defect developed for different reasons, although the two metro samples were similar. One of the studs shows branching of cracks that, based on its changing angle of growth, could continue to grow into transverse defects, breaking the rail. The three defects that were scanned would all be classed as studs, but their crack morphology varies, possibly because they are all from different traffic environments. They also show slight differences to other studs in literature

    CUL9 Mediates the Functions of the 3M Complex and Ubiquitylates Survivin to Maintain Genome Integrity

    Get PDF
    The Cullin 9 (CUL9) gene encodes a putative E3 ligase that localizes in the cytoplasm. Cul9 null mice develop spontaneous tumors in multiple organs, however either the cellular or molecular mechanisms of CUL9 in tumor suppression are currently not known. We show here that deletion of Cul9 leads to abnormal nuclear morphology, increased DNA damage and aneuploidy. CUL9 knockdown rescues the microtubule and mitosis defects in cells depleted for CUL7 or OBSL1, two genes that are mutated in a mutually exclusive manner in 3M growth retardation syndrome and function in microtubule dynamics. CUL9 promotes the ubiquitylation and degradation of survivin and is inhibited by CUL7. Depletion of CUL7 decreases survivin level and overexpression of survivin rescues the defects caused by CUL7 depletion. We propose a 3M–CUL9-survivin pathway in maintaining microtubule and genome integrity, normal development and tumor suppression

    Benefits of calorie restriction in mice are mediated via energy imbalance, not absolute energy or protein intake

    Get PDF
    We thank Jifeng Huang and Xuemei Cao for their assistance with mouse care and data collection, the UAB Small Animal Phenotyping Core for body composition and indirect calorimetry measures, and the UAB Metabolism Core for hormone and metabolite assessments. We also acknowledge and thank the Biological Services Unit staff in Aberdeen for their help with animal care in facilities at the University of Aberdeen.Peer reviewe

    The influence of picosecond laser generated periodic structures on bacterial behaviour

    Get PDF
    The formation of a biofilm is preceded by bacterial retention and proliferation on a surface. Biofilm development on surfaces can cause numerous issues in terms of fouling and bacterial transmission and contamination. The design and fabrication of surfaces that prevent bacterial retention and biofilm formation may provide a potential solution to reduce bacterial fouling of surfaces. An EdgeWave, Nd:YVO4 picosecond laser was used to generate two periodic surface topographies on 316L stainless steel surfaces with and without fluoroalkylsilane (FAS) treatment. These were characterised using Optical Laser Microscopy (OLM), Scanning Electron Microscopy (SEM), contact angle measurements, and Energy Dispersive X-ray Spectroscopy (EDX). The surface wettability and retention of Escherichia coli bacteria on the laser generated surfaces were analysed over one month. Without chemical treatment, and with increasing the time to one month, the results showed that the wettability of laser treated surfaces was decreased as was subsequent bacterial retention. However, the control surface recorded the lowest number of adhered bacteria. After reducing the surface tension, the number of bacteria retention was decreased on all surfaces and one of laser generated surfaces which presented higher contact angle and lower surface tension components (CA = 132°, ΔGiwi = −85.26, γs = 13.81, γsLW = 13.37, and γs− = 0.13) recorded the minimal number of bacteria retention. The results showed that reducing the surface tension played an important role which reduced bacterial fouling

    Two chemically similar stellar overdensities on opposite sides of the plane of the Galaxy

    Get PDF
    Our Galaxy is thought to have undergone an active evolutionary history dominated by star formation, the accretion of cold gas, and, in particular, mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of these interactions in the form of stellar streams, substructures, and chemically distinct stellar components. The impact of dwarf galaxy mergers on the content and morphology of the Galactic disk is still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups, which may have extragalactic origin. However, there is mounting evidence that stellar overdensities at the outer disk/halo interface could have been caused by the interaction of a dwarf galaxy with the disk. Here we report detailed spectroscopic analysis of 14 stars drawn from two stellar overdensities, each lying about 5 kiloparsecs above and below the Galactic plane - locations suggestive of association with the stellar halo. However, we find that the chemical compositions of these stars are almost identical, both within and between these groups, and closely match the abundance patterns of the Milky Way disk stars. This study hence provides compelling evidence that these stars originate from the disk and the overdensities they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.Comment: accepted for publication in Natur
    corecore