9 research outputs found

    Genome-Wide Association Studies of the PR Interval in African Americans

    Get PDF
    The PR interval on the electrocardiogram reflects atrial and atrioventricular nodal conduction time. The PR interval is heritable, provides important information about arrhythmia risk, and has been suggested to differ among human races. Genome-wide association (GWA) studies have identified common genetic determinants of the PR interval in individuals of European and Asian ancestry, but there is a general paucity of GWA studies in individuals of African ancestry. We performed GWA studies in African American individuals from four cohorts (n = 6,247) to identify genetic variants associated with PR interval duration. Genotyping was performed using the Affymetrix 6.0 microarray. Imputation was performed for 2.8 million single nucleotide polymorphisms (SNPs) using combined YRI and CEU HapMap phase II panels. We observed a strong signal (rs3922844) within the gene encoding the cardiac sodium channel (SCN5A) with genome-wide significant association (p<2.5×10−8) in two of the four cohorts and in the meta-analysis. The signal explained 2% of PR interval variability in African Americans (beta  = 5.1 msec per minor allele, 95% CI  = 4.1–6.1, p = 3×10−23). This SNP was also associated with PR interval (beta = 2.4 msec per minor allele, 95% CI = 1.8–3.0, p = 3×10−16) in individuals of European ancestry (n = 14,042), but with a smaller effect size (p for heterogeneity <0.001) and variability explained (0.5%). Further meta-analysis of the four cohorts identified genome-wide significant associations with SNPs in SCN10A (rs6798015), MEIS1 (rs10865355), and TBX5 (rs7312625) that were highly correlated with SNPs identified in European and Asian GWA studies. African ancestry was associated with increased PR duration (13.3 msec, p = 0.009) in one but not the other three cohorts. Our findings demonstrate the relevance of common variants to African Americans at four loci previously associated with PR interval in European and Asian samples and identify an association signal at one of these loci that is more strongly associated with PR interval in African Americans than in Europeans

    Social Bonding and Nurture Kinship: Compatibility between Cultural and Biological Approaches

    Full text link

    Confirmation and Generalization of an Alcohol-Dependence Locus on Chromosome 10q

    No full text
    Several genome scans on alcohol dependence (AD) and AD-related traits have been published. In this article, we present the results of a genome-wide linkage scan on AD and several related traits in 322 European-American (EA) families, and results of additional analysis in 335 African-American (AA) families that were the subject of a previous report. All families were initially ascertained for cocaine and/or opioid dependence. Non-parametric linkage analysis in the EA sample revealed suggestive linkages on chromosomes 7 (LOD=2.1 at 82.8 cM, p=0.0009) and 10 (LOD=3.0 at 137.7 cM, p=0.0001). The chromosome 10 linkage peak is 20 cM distal from a genome-wide significant linkage peak we observed previously in the AA sample. Parametric linkage analysis on chromosome 10 (assuming a recessive model, 80% penetrance, disease allele frequency=0.3) resulted in LOD scores of 2.7 at 136.7 cM and 1.9 at 121.7 cM in the EA and AA samples, respectively, with a combined sample genome-wide significant LOD score of 4.1 at 131.7 cM. To reduce heterogeneity of the AD phenotype, we also assessed linkage of chromosome 10 markers with the presence of alcohol withdrawal symptoms, one of the seven components of the DSM-IV diagnosis of AD. Suggestive evidence for linkage was observed in both populations with only 5 cM separating the location of the peak LOD scores despite a loss of power due to a smaller number of families informative for this trait. Results of our study confirm a chromosome 10 risk locus for AD in two genetically distinct populations and suggest that this locus may correspond more precisely to a specific component of the disorder

    Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease

    No full text
    corecore