32 research outputs found
SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints
Background: Genomic disorders are caused by copy number changes that may exhibit recurrent breakpoints processed by nonallelic homologous recombination. However, region-specific disease-associated copy number changes have also been observed which exhibit non-recurrent breakpoints. The mechanisms underlying these non-recurrent copy number changes have not yet been fully elucidated. Results: We analyze large NF1 deletions with non-recurrent breakpoints as a model to investigate the full spectrum of causative mechanisms, and observe that the
Ovarian cancer pathology characteristics as predictors of variant pathogenicity in BRCA1 and BRCA2
Background: The distribution of ovarian tumour characteristics differs between germline BRCA1 and BRCA2 pathogenic variant carriers and non-carriers. In this study, we assessed the utility of ovarian tumour characteristics as predictors of BRCA1 and BRCA2 variant pathogenicity, for application using the American College of Medical Genetics and the Association for Molecular Pathology (ACMG/AMP) variant classification system. Methods: Data for 10,373 ovarian cancer cases, including carriers and non-carriers of BRCA1 or BRCA2 pathogenic variants, were collected from unpublished international cohorts and consortia and published studies. Likelihood ratios (LR) were calculated for the association of ovarian cancer histology and other characteristics, with BRCA1 and BRCA2 variant pathogenicity. Estimates were aligned to ACMG/AMP code strengths (supporting, moderate, strong). Results: No histological subtype provided informative ACMG/AMP evidence in favour of BRCA1 and BRCA2 variant pathogenicity. Evidence against variant pathogenicity was estimated for the mucinous and clear cell histologies (supporting) and borderline cases (moderate). Refined associations are provided according to tumour grade, invasion and age at diagnosis. Conclusions: We provide detailed estimates for predicting BRCA1 and BRCA2 variant pathogenicity based on ovarian tumour characteristics. This evidence can be combined with other variant information under the ACMG/AMP classification system, to improve classification and carrier clinical management.</p
Genotype-phenotype associations in a large PTEN Hamartoma Tumor Syndrome (PHTS) patient cohort
Background: Pathogenic PTEN germline variants cause PTEN Hamartoma Tumor Syndrome (PHTS), a rare disease with a variable genotype and phenotype. Knowledge about these spectra and genotype-phenotype associations could help diagnostics and potentially lead to personalized care. Therefore, we assessed the PHTS genotype and phenotype spectrum in a large cohort study. Methods: Information was collected of 510 index patients with pathogenic or likely pathogenic (LP/P) PTEN variants (n = 467) or variants of uncertain significance. Genotype-phenotype associations were assessed using logistic regression analyses adjusted for sex and age.Results: At time of genetic testing, the majority of children (n = 229) had macrocephaly (81%) or developmental delay (DD, 61%), and about half of the adults (n = 238) had cancer (51%), macrocephaly (61%), or cutaneous pathology (49%). Across PTEN, 268 LP/P variants were identified, with exon 5 as hotspot. Missense variants (n = 161) were mainly located in the phosphatase domain (PD, 90%) and truncating variants (n = 306) across all domains. A trend towards 2 times more often truncating variants was observed in adults (OR = 2.3, 95%CI = 1.5-3.4) and patients with cutaneous pathology (OR = 1.6, 95%CI = 1.1-2.5) or benign thyroid pathology (OR = 2.0, 95%CI = 1.1-3.5), with trends up to 2-4 times more variants in PD. Whereas patients with DD (OR = 0.5, 95%CI = 0.3-0.9) or macrocephaly (OR = 0.6, 95%CI = 0.4-0.9) had about 2 times less often truncating variants compared to missense variants. In DD patients these missense variants were often located in domain C2.Conclusion: The PHTS phenotypic diversity may partly be explained by the PTEN variant coding effect and the combination of coding effect and domain. PHTS patients with early-onset disease often had missense variants, and those with later-onset disease often truncating variants
Polygenic risk modeling for prediction of epithelial ovarian cancer risk
Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, "select and shrink for summary statistics" (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38 (95% CI: 1.28-1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08-1.19, AUC: 0.538) in women of East Asian ancestries; 1.38 (95% CI: 1.21-1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI: 1.29-1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35-1.64, AUC: 0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs
Functional Mechanisms Underlying Pleiotropic Risk Alleles at the 19p13.1 Breast–Ovarian Cancer Susceptibility Locus
A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P = 9.2 X 10-20), ER-negative BC (P = 1.1 X 10-13), BRCA1 -associated BC (P = 7.7 X 10-16) and triple negative BC (P-diff = 2 X 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P = 2 X 10-3) and ABHD8 (P \u3c 2 X 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8 , and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3\u27-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk
Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women
Background: Most BRCA1 or BRCA2 mutation carriers have inherited a single (heterozygous) mutation. Transheterozygotes (TH) who have inherited deleterious mutations in both BRCA1 and BRCA2 are rare, and the consequences of transheterozygosity are poorly understood. Methods: From 32,295 female BRCA1/2 mutation carriers, we identified 93 TH (0.3 %). "Cases" were defined as TH, and "controls" were single mutations at BRCA1 (SH1) or BRCA2 (SH2). Matched SH1 "controls" carried a BRCA1 mutation found in the TH "case". Matched SH2 "controls" carried a BRCA2 mutation found in the TH "case". After matching the TH carriers with SH1 or SH2, 91 TH were matched to 9316 SH1, and 89 TH were matched to 3370 SH2. Results: The majority of TH (45.2 %) involved the three common Jewish mutations. TH were more likely than SH1 and SH2 women to have been ever diagnosed with breast cancer (BC; p = 0.002). TH were more likely to be diagnosed with ovarian cancer (OC) than SH2 (p = 0.017), but not SH1. Age at BC diagnosis was the same in TH vs. SH1 (p = 0.231), but was on average 4.5 years younger in TH than in SH2 (p < 0.001). BC in TH was more likely to be estrogen receptor (ER) positive (p = 0.010) or progesterone receptor (PR) positive (p = 0.013) than in SH1, but less likely to be ER positive (p < 0.001) or PR positive (p = 0.012) than SH2. Among 15 tumors from TH patients, there was no clear pattern of loss of heterozygosity (LOH) for BRCA1 or BRCA2 in either BC or OC. Conclusions: Our observations suggest that clinical TH phenotypes resemble SH1. However, TH breast tumor marker characteristics are phenotypically intermediate to SH1 and SH2
Male breast cancer in BRCA1 and BRCA2 mutation carriers : pathology data from the Consortium of Investigators of Modifiers of BRCA1/2
Background: BRCA1 and, more commonly, BRCA2 mutations are associated with increased risk of male breast cancer (MBC). However, only a paucity of data exists on the pathology of breast cancers (BCs) in men with BRCA1/2 mutations. Using the largest available dataset, we determined whether MBCs arising in BRCA1/2 mutation carriers display specific pathologic features and whether these features differ from those of BRCA1/2 female BCs (FBCs). Methods: We characterised the pathologic features of 419 BRCA1/2 MBCs and, using logistic regression analysis, contrasted those with data from 9675 BRCA1/2 FBCs and with population-based data from 6351 MBCs in the Surveillance, Epidemiology, and End Results (SEER) database. Results: Among BRCA2 MBCs, grade significantly decreased with increasing age at diagnosis (P = 0.005). Compared with BRCA2 FBCs, BRCA2 MBCs were of significantly higher stage (P for trend = 2 x 10(-5)) and higher grade (P for trend = 0.005) and were more likely to be oestrogen receptor-positive [odds ratio (OR) 10.59; 95 % confidence interval (CI) 5.15-21.80] and progesterone receptor-positive (OR 5.04; 95 % CI 3.17-8.04). With the exception of grade, similar patterns of associations emerged when we compared BRCA1 MBCs and FBCs. BRCA2 MBCs also presented with higher grade than MBCs from the SEER database (P for trend = 4 x 10(-12)). Conclusions: On the basis of the largest series analysed to date, our results show that BRCA1/2 MBCs display distinct pathologic characteristics compared with BRCA1/2 FBCs, and we identified a specific BRCA2-associated MBC phenotype characterised by a variable suggesting greater biological aggressiveness (i.e., high histologic grade). These findings could lead to the development of gender-specific risk prediction models and guide clinical strategies appropriate for MBC management.Peer reviewe
Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers
Introduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRCA2 carriers. Methods: We used data from 15,252 BRCA1 and 8,211 BRCA2 carriers to analyze the associations between approximately 200,000 genetic variants on the iCOGS array and risk of BC subtypes defined by estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and triple-negative- (TN) status; morphologic subtypes; histological grade; and nodal involvement. Results: The estimated BC hazard ratios (HRs) for the 74 known BC alleles in BRCA1 carriers exhibited moderate correlations with the corresponding odds ratios from the general population. However, their associations with ER-positive BC in BRCA1 carriers were more consistent with the ER-positive as
Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk
The predictive ability of the 313 variant–based polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant
PURPOSE : To evaluate the association between a previously published 313 variant–based breast cancer (BC) polygenic risk score
(PRS313) and contralateral breast cancer (CBC) risk, in BRCA1 and BRCA2 pathogenic variant heterozygotes.
METHODS : We included women of European ancestry with a prevalent first primary invasive BC (BRCA1 = 6,591 with 1,402
prevalent CBC cases; BRCA2 = 4,208 with 647 prevalent CBC cases) from the Consortium of Investigators of Modifiers of BRCA1/2
(CIMBA), a large international retrospective series. Cox regression analysis was performed to assess the association between overall
and ER-specific PRS313 and CBC risk.
RESULTS : For BRCA1 heterozygotes the estrogen receptor (ER)-negative PRS313 showed the largest association with CBC risk, hazard
ratio (HR) per SD = 1.12, 95% confidence interval (CI) (1.06–1.18), C-index = 0.53; for BRCA2 heterozygotes, this was the ER-positive
PRS313, HR= 1.15, 95% CI (1.07–1.25), C-index = 0.57. Adjusting for family history, age at diagnosis, treatment, or pathological
characteristics for the first BC did not change association effect sizes. For women developing first BC < age 40 years, the cumulative
PRS313 5th and 95th percentile 10-year CBC risks were 22% and 32% for BRCA1 and 13% and 23% for BRCA2 heterozygotes,
respectively.
CONCLUSION : The PRS313 can be used to refine individual CBC risks for BRCA1/2 heterozygotes of European ancestry, however the
PRS313 needs to be considered in the context of a multifactorial risk model to evaluate whether it might influence clinical decisionmaking.This work was supported by the Alpe d’HuZes/Dutch Cancer Society (KWF
Kankerbestrijding) project 6253 and Dutch Cancer Society (KWF Kankerbestrijding)
project UL2014-7473. CIMBA: The CIMBA data management and data analysis were
supported by Cancer Research–UK grants C12292/A20861, C12292/A11174. G.C.T.
and A.B.S. are NHMRC Research Fellows. iCOGS: the European Community’s Seventh
Framework Programme under grant agreement number 223175 (HEALTH-F2-2009-
223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/
A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/
A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS
initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112–the GAME-ON
initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes
of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer (CRN-
87521), and the Ministry of Economic Development, Innovation and Export Trade
(PSR-SIIRI-701), Komen Foundation for the Cure, the Breast Cancer Research
Foundation, and the Ovarian Cancer Research Fund. OncoArray: the PERSPECTIVE
and PERSPECTIVE I&I projects funded by the Government of Canada through
Genome Canada and the Canadian Institutes of Health Research, the Ministère de
l’Économie, de la Science et de l’Innovation du Québec through Genome Québec,
and the Quebec Breast Cancer Foundation; the NCI Genetic Associations and
Mechanisms in Oncology (GAME-ON) initiative and Discovery, Biology and Risk of
Inherited Variants in Breast Cancer (DRIVE) project (NIH grants U19 CA148065 and
X01HG007492); and Cancer Research UK (C1287/A10118 and C1287/A16563). BCFR:
UM1 CA164920 from the National Cancer Institute. The content of this paper does
not necessarily reflect the views or policies of the National Cancer Institute or any of
the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does
mention of trade names, commercial products, or organizations imply endorsement
by the US Government or the BCFR. BFBOCC: Lithuania (BFBOCC-LT): Research
Council of Lithuania grant SEN-18/2015. BIDMC: Breast Cancer Research Foundation.
BMBSA: Cancer Association of South Africa (PI Elizabeth J. van Rensburg). BRI-COH: S.
L.N. is partially supported by the Morris and Horowitz Families Professorship. CNIO:
Spanish Ministry of Health PI16/00440 supported by FEDER funds, the Spanish
Ministry of Economy and Competitiveness (MINECO) SAF2014-57680-R and the Spanish Research Network on Rare diseases (CIBERER). COH-CCGCRN: Research
reported in this publication was supported by the National Cancer Institute of the
National Institutes of Health under grant number R25CA112486, and RC4CA153828
(PI: J. Weitzel) from the National Cancer Institute and the Office of the Director,
National Institutes of Health. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National Institutes of
Health. CONSIT TEAM: Associazione Italiana Ricerca sul Cancro (AIRC; IG2015 number
16732) to P. Peterlongo. DEMOKRITOS: European Union (European Social Fund–ESF)
and Greek national funds through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework (NSRF)–Research Funding
Program of the General Secretariat for Research & Technology: SYN11_10_19 NBCA.
Investing in knowledge society through the European Social Fund. DFKZ: German
Cancer Research Center. EMBRACE: Cancer Research UK Grants C1287/A10118 and
C1287/A11990. D.G.E. and F.L. are supported by an NIHR grant to the Biomedical
Research Centre, Manchester. The Investigators at The Institute of Cancer Research
and The Royal Marsden NHS Foundation Trust are supported by an NIHR grant to the
Biomedical Research Centre at The Institute of Cancer Research and The Royal
Marsden NHS Foundation Trust. R.E. and E.B. are supported by Cancer Research UK
Grant C5047/A8385. R.E. is also supported by NIHR support to the Biomedical
Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. FCCC: A.K.G. was in part funded by the NCI (R01 CA214545), The
University of Kansas Cancer Center Support Grant (P30 CA168524), The Kansas
Institute for Precision Medicine (P20 GM130423), and the Kansas Bioscience Authority
Eminent Scholar Program. A.K.G. is the Chancellors Distinguished Chair in Biomedical
Sciences Professorship. FPGMX: A. Vega is supported by the Spanish Health Research
Foundation, Instituto de Salud Carlos III (ISCIII), partially supported by FEDER funds
through Research Activity Intensification Program (contract grant numbers: INT15/
00070, INT16/00154, INT17/00133), and through Centro de Investigación Biomédica
en Red de Enferemdades Raras CIBERER (ACCI 2016: ER17P1AC7112/2018);
Autonomous Government of Galicia (Consolidation and structuring program:
IN607B), and by the Fundación Mutua Madrileña. The German Consortium for
Hereditary Breast and Ovarian Cancer (GC-HBOC) is funded by the German Cancer
Aid (110837, 70111850, coordinator: Rita K. Schmutzler, Cologne) and the Ministry for
Innovation, Science and Research of the State of North Rhine-Westphalia (#323-
8.0302.16.02-132142). GEMO: initially funded by the French National Institute of
Cancer (INCa, PHRC Ile de France, grant AOR 01 082, 2001-2003, grant 2013-1-BCB-01-
ICH-1), the Association “Le cancer du sein, parlons-en!” Award (2004), the Association
for International Cancer Research (2008-2010), and the Foundation ARC pour la
recherche sur le cancer (grant PJA 20151203365). It also received support from the
Canadian Institute of Health Research for the “CIHR Team in Familial Risks of Breast
Cancer” program (2008–2013), and the European commission FP7, Project
«Collaborative Ovarian, breast and prostate Gene-environment Study (COGS),
Large-scale integrating project» (2009–2013). GEMO is currently supported by the
INCa grant SHS-E-SP 18-015. GEORGETOWN: The Survey, Recruitment, and Biospecimen
Collection Shared Resource at Georgetown University (NIH/NCI grant P30-
CA051008), the Fisher Center for Hereditary Cancer and Clinical Genomics Research,
and the Nina Hyde Center for Breast Cancer Research. G-FAST: Bruce Poppe is a
senior clinical investigator of FWO. Mattias Van Heetvelde obtained funding from
IWT. HCSC: Spanish Ministry of Health PI15/00059, PI16/01292, and CB-161200301
CIBERONC from ISCIII (Spain), partially supported by European Regional Development
FEDER funds. HEBCS: Helsinki University Hospital Research Fund, the Finnish Cancer
Society and the Sigrid Juselius Foundation. The HEBON study is supported by the
Dutch Cancer Society grants NKI1998-1854, NKI2004-3088, NKI2007-3756, the Netherlands Organisation of Scientific Research grant NWO 91109024, the Pink
Ribbon grants 110005 and 2014-187.WO76, the BBMRI grant NWO 184.021.007/CP46
and the Transcan grant JTC 2012 Cancer 12-054. HRBCP: Hong Kong Sanatorium and
Hospital, Dr Ellen Li Charitable Foundation, The Kerry Group Kuok Foundation,
National Institute of Health1R 03CA130065, and North California Cancer Center.
HUNBOCS: Hungarian Research Grants KTIA-OTKA CK-80745, NKFI_OTKA K-112228
and TUDFO/51757/2019-ITM. ICO: Contract grant sponsor: Supported by the Carlos III
National Health Institute funded by FEDER funds–a way to build Europe–(PI16/00563,
PI19/00553 and CIBERONC); the Government of Catalonia (Pla estratègic de recerca i
innovaciĂł en salut (PERIS) Project MedPerCan, 2017SGR1282 and 2017SGR496); and
CERCA program.IHCC: supported by grant PBZ_KBN_122/P05/2004 and the program
of the Minister of Science and Higher Education under the name “Regional Initiative
of Excellence” in 2019–2022 project number 002/RID/2018/19 amount of financing 12
000 000 PLN. ILUH: Icelandic Association “Walking for Breast Cancer Research” and by
the Landspitali University Hospital Research Fund. INHERIT: Canadian Institutes of
Health Research for the “CIHR Team in Familial Risks of Breast Cancer” program–grant
CRN-87521 and the Ministry of Economic Development, Innovation and Export
Trade–grant # PSR-SIIRI-701. IOVHBOCS: Ministero della Salute and “5×1000” Istituto
Oncologico Veneto grant. IPOBCS: Liga Portuguesa Contra o Cancro. kConFab: The
National Breast Cancer Foundation, and previously by the National Health and
Medical Research Council (NHMRC), the Queensland Cancer Fund, the Cancer
Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer
Foundation of Western Australia. KOHBRA: the Korea Health Technology R&D Project
through the Korea Health Industry Development Institute (KHIDI), and the National
R&D Program for Cancer Control, Ministry of Health & Welfare, Republic of Korea
(HI16C1127; 1020350; 1420190). KUMC: NIGMS P20 GM130423 (to A.K.G.). MAYO: NIH
grants CA116167, CA192393 and CA176785, an NCI Specialized Program of Research
Excellence (SPORE) in Breast Cancer (CA116201), and a grant from the Breast Cancer
Research Foundation. MCGILL: Jewish General Hospital Weekend to End Breast
Cancer, Quebec Ministry of Economic Development, Innovation and Export Trade.
Marc Tischkowitz is supported by the funded by the European Union Seventh
Framework Program (2007Y2013)/European Research Council (Grant No. 310018).
MODSQUAD: MH CZ–DRO (MMCI, 00209805) and LM2018125, MEYS–NPS I–LO1413 to LF, and by Charles University in Prague project UNCE204024 (MZ). MSKCC: the
Breast Cancer Research Foundation, the Robert and Kate Niehaus Clinical Cancer
Genetics Initiative, the Andrew Sabin Research Fund and a Cancer Center Support
Grant/Core Grant (P30 CA008748). NAROD: 1R01 CA149429-01. NCI: the Intramural
Research Program of the US National Cancer Institute, NIH, and by support services
contracts NO2-CP-11019-50, N02-CP-21013-63 and N02-CP-65504 with Westat, Inc,
Rockville, MD. NICCC: Clalit Health Services in Israel, the Israel Cancer Association and
the Breast Cancer Research Foundation (BCRF), NY. NNPIO: the Russian Foundation
for Basic Research (grants 17-00-00171, 18-515-45012 and 19-515-25001). NRG Oncology: U10 CA180868, NRG SDMC grant U10 CA180822, NRG Administrative
Office and the NRG Tissue Bank (CA 27469), the NRG Statistical and Data Center (CA
37517) and the Intramural Research Program, NCI. OSUCCG: Ohio State University
Comprehensive Cancer Center. PBCS: supported by the “Fondazione Pisa per la
Scienza, project nr. 127/2016. Maria A Caligo was supported by the grant: “n. 127/16
Caratterizzazione delle varianti missenso nei geni BRCA1/2 per la valutazione del
rischio di tumore al seno” by Fondazione Pisa, Pisa, Italy; SEABASS: Ministry of
Science, Technology and Innovation, Ministry of Higher Education (UM.C/HlR/MOHE/
06) and Cancer Research Initiatives Foundation. SMC: the Israeli Cancer Association.
SWE-BRCA: the Swedish Cancer Society. UCHICAGO: NCI Specialized Program of
Research Excellence (SPORE) in Breast Cancer (CA125183), R01 CA142996,
1U01CA161032 and by the Ralph and Marion Falk Medical Research Trust, the
Entertainment Industry Fund National Women’s Cancer Research Alliance and the
Breast Cancer research Foundation. O.I.O. is an ACS Clinical Research Professor. UCLA:
Jonsson Comprehensive Cancer Center Foundation; Breast Cancer Research
Foundation. UCSF: UCSF Cancer Risk Program and Helen Diller Family Comprehensive
Cancer Center. UKFOCR: Cancer Research h UK. UPENN: Breast Cancer Research
Foundation; Susan G. Komen Foundation for the cure, Basser Research Center for
BRCA. UPITT/MWH: Hackers for Hope Pittsburgh. VFCTG: Victorian Cancer Agency,
Cancer Australia, National Breast Cancer Foundation. WCP: B.Y.K. is funded by the
American Cancer Society Early Detection Professorship (SIOP-06-258-01-COUN) and
the National Center for Advancing Translational Sciences (NCATS), grant
UL1TR000124.https://www.gimjournal.org/am2023Genetic