32 research outputs found

    Can big data solve a big problem? Reporting the obesity data landscape in line with the Foresight obesity system map.

    Get PDF
    BACKGROUND: Obesity research at a population level is multifaceted and complex. This has been characterised in the UK by the Foresight obesity systems map, identifying over 100 variables, across seven domain areas which are thought to influence energy balance, and subsequent obesity. Availability of data to consider the whole obesity system is traditionally lacking. However, in an era of big data, new possibilities are emerging. Understanding what data are available can be the first challenge, followed by an inconsistency in data reporting to enable adequate use in the obesity context. In this study we map data sources against the Foresight obesity system map domains and nodes and develop a framework to report big data for obesity research. Opportunities and challenges associated with this new data approach to whole systems obesity research are discussed. METHODS: Expert opinion from the ESRC Strategic Network for Obesity was harnessed in order to develop a data source reporting framework for obesity research. The framework was then tested on a range of data sources. In order to assess availability of data sources relevant to obesity research, a data mapping exercise against the Foresight obesity systems map domains and nodes was carried out. RESULTS: A reporting framework was developed to recommend the reporting of key information in line with these headings: Background; Elements; Exemplars; Content; Ownership; Aggregation; Sharing; Temporality (BEE-COAST). The new BEE-COAST framework was successfully applied to eight exemplar data sources from the UK. 80% coverage of the Foresight obesity systems map is possible using a wide range of big data sources. The remaining 20% were primarily biological measurements often captured by more traditional laboratory based research. CONCLUSIONS: Big data offer great potential across many domains of obesity research and need to be leveraged in conjunction with traditional data for societal benefit and health promotion

    Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial

    Get PDF
    Background: Tranexamic acid reduces surgical bleeding and reduces death due to bleeding in patients with trauma. Meta-analyses of small trials show that tranexamic acid might decrease deaths from gastrointestinal bleeding. We aimed to assess the effects of tranexamic acid in patients with gastrointestinal bleeding. Methods: We did an international, multicentre, randomised, placebo-controlled trial in 164 hospitals in 15 countries. Patients were enrolled if the responsible clinician was uncertain whether to use tranexamic acid, were aged above the minimum age considered an adult in their country (either aged 16 years and older or aged 18 years and older), and had significant (defined as at risk of bleeding to death) upper or lower gastrointestinal bleeding. Patients were randomly assigned by selection of a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients received either a loading dose of 1 g tranexamic acid, which was added to 100 mL infusion bag of 0·9% sodium chloride and infused by slow intravenous injection over 10 min, followed by a maintenance dose of 3 g tranexamic acid added to 1 L of any isotonic intravenous solution and infused at 125 mg/h for 24 h, or placebo (sodium chloride 0·9%). Patients, caregivers, and those assessing outcomes were masked to allocation. The primary outcome was death due to bleeding within 5 days of randomisation; analysis excluded patients who received neither dose of the allocated treatment and those for whom outcome data on death were unavailable. This trial was registered with Current Controlled Trials, ISRCTN11225767, and ClinicalTrials.gov, NCT01658124. Findings: Between July 4, 2013, and June 21, 2019, we randomly allocated 12 009 patients to receive tranexamic acid (5994, 49·9%) or matching placebo (6015, 50·1%), of whom 11 952 (99·5%) received the first dose of the allocated treatment. Death due to bleeding within 5 days of randomisation occurred in 222 (4%) of 5956 patients in the tranexamic acid group and in 226 (4%) of 5981 patients in the placebo group (risk ratio [RR] 0·99, 95% CI 0·82–1·18). Arterial thromboembolic events (myocardial infarction or stroke) were similar in the tranexamic acid group and placebo group (42 [0·7%] of 5952 vs 46 [0·8%] of 5977; 0·92; 0·60 to 1·39). Venous thromboembolic events (deep vein thrombosis or pulmonary embolism) were higher in tranexamic acid group than in the placebo group (48 [0·8%] of 5952 vs 26 [0·4%] of 5977; RR 1·85; 95% CI 1·15 to 2·98). Interpretation: We found that tranexamic acid did not reduce death from gastrointestinal bleeding. On the basis of our results, tranexamic acid should not be used for the treatment of gastrointestinal bleeding outside the context of a randomised trial

    Point-of-care testing in paediatric settings in the UK and Ireland: A cross-sectional study

    Get PDF
    Background: Point-of-care testing (POCT) is diagnostic testing performed at or near to the site of the patient. Understanding the current capacity, and scope, of POCT in this setting is essential in order to respond to new research evidence which may lead to wide implementation. Methods: A cross-sectional online survey study of POCT use was conducted between 6th January and 2nd February 2020 on behalf of two United Kingdom (UK) and Ireland-based paediatric research networks (Paediatric Emergency Research UK and Ireland, and General and Adolescent Paediatric Research UK and Ireland). Results: In total 91/109 (83.5%) sites responded, with some respondents providing details for multiple units on their site based on network membership (139 units in total). The most commonly performed POCT were blood sugar (137/139; 98.6%), urinalysis (134/139; 96.4%) and blood gas analysis (132/139; 95%). The use of POCT for Influenza/Respiratory Syncytial Virus (RSV) (45/139; 32.4%, 41/139; 29.5%), C-Reactive Protein (CRP) (13/139; 9.4%), Procalcitonin (PCT) (2/139; 1.4%) and Group A Streptococcus (5/139; 3.6%) and was relatively low. Obstacles to the introduction of new POCT included resources and infrastructure to support test performance and quality assurance. Conclusion: This survey demonstrates significant consensus in POCT practice in the UK and Ireland but highlights specific inequity in newer biomarkers, some which do not have support from national guidance. A clear strategy to overcome the key obstacles of funding, evidence base, and standardising variation will be essential if there is a drive toward increasing implementation of POCT

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Regulation of sphingosine kinase 1 signalling by calcium- and integrin-binding proteins.

    Get PDF
    Sphingosine kinase 1 (SK1) catalyses the conversion of sphingosine to sphingosine-1-phosphate (S1P). Since elevated levels of cellular S1P have a well characterised prosurvival, pro-proliferative and oncogenic effect in cells, the regulation of SK1 activity is the subject of much current focus. Cells typically have low basal levels of SK1 activity, which appears to have a 'housekeeping’ role in the sphingomyelin cycle. However, the catalytic activity of this enzyme can be increased by a number of growth factors, cytokines and other agonists, generating a greater pool of S1P, which then appears to be involved in its cellular signalling. The Pitson group have previously demonstrated that the agonist-induced activation of human SK1 is mediated through phosphorylation of this enzyme at Ser²²⁵. Following this phosphorylation, SK1 translocates from the cytosol to the plasma membrane, with both of these events critical for the pro-survival, anti-apoptotic and oncogenic effects of this enzyme. Prior to the current study, the mechanism for the rapid, agonist-induced translocation of SK1 to the plasma membrane remained undetermined. Previous studies have demonstrated the requirement of the calmodulin binding site in SK1 for this translocation event, however a direct requirement for calmodulin itself has yet to be shown. In this study, we show that calcium- and integrin-binding protein 1 (CIB1), a calmodulinlike molecule, mediates the agonist-induced translocation of SK1 to the plasma membrane. We also demonstrate the ability of CIB1 to act as calcium-myristoyl switch, providing a functional mechanism by which it can mediate SK1 localisation to the plasma membrane. In addition, CIB1 was shown to be critical for the agonist-induced production of S1P and also the anti-apoptotic signalling associated with SK1. Furthermore, CIB1 itself was shown to be potentially oncogenic, and a dominant-negative version of CIB1 was also able to inhibit H-Ras-induced oncogenesis. These studies have also investigated the three other members of the CIB family of proteins, CIB2, CIB3 and CIB4 and their roles in regulating SK1 localisation and subsequent signalling events. While CIB1 was critical for the agonist-induced translocation of SK1 to the plasma membrane, CIB2 acted in an opposite manner, blocking the translocation of this enzyme. Furthermore, expression of CIB2 enhanced cellular apoptosis, presumably through its inhibitory effects on the SK1 survival pathway. In addition, CIB2 blocked H-Ras mediated oncogenesis. Hence, CIB1 and CIB2 appear to have opposing roles in the cell in relation to the regulation of SK1 signalling. CIB3 and CIB4 also appeared to interact with SK1 in vitro, however the cellular function of these interactions was not elucidated in this study. Interestingly, despite having considerable sequence similarity to CIB1 and CIB2, neither protein acted in a similar manner to either CIB1 or CIB2 with respect to SK1 function. While CIB3 did not appear to have any role in the SK1 signalling pathway, studies suggested CIB4 likely to have additional binding partners in the cell masking the ability to determine the biological function of the CIB4-SK1 interaction. Overall, this study identified both the translocation mechanism of SK1, in addition to a natural suppressor of this event. As the localisation of SK1 at the plasma membrane is critical in the oncogenic signalling of this enzyme, these findings may represent potential new directions for anti-cancer therapeutics.Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 201

    Sego Lily with gold hexagon on red and blue stripe

    No full text

    Michael Charlesworth (2011) Derek Jarman

    No full text

    Treatment guidelines for personality disorders

    Get PDF
    These treatment guidelines are organised according to a typical sequence of a whole of service experience: from a presentation in crisis to a hospital emergency department, through to long-term treatments. Along the way, it presents guidelines for good practice in assessment, brief interventions, care planning, involving family members and carers1, and ongoing community treatment. These Australian treatment guidelines have been developed by the Project Air Strategy for Personality Disorders
    corecore