12 research outputs found

    NF1 is a critical regulator of muscle development and metabolism

    No full text
    There is emerging evidence for reduced muscle function in children with neurofibromatosis type 1 (NF1). We have examined three murine models featuring NF1 deficiency in muscle to study the effect on muscle function as well as any underlying pathophysiology. The Nf1 mouse exhibited no differences in overall weight, lean tissue mass, fiber size, muscle weakness as measured by grip strength or muscle atrophy-recovery with limb disuse, although this model lacks many other characteristic features of the human disease. Next, muscle-specific knockout mice (Nf1 ) were generated and they exhibited a failure to thrive leading to neonatal lethality. Intramyocellular lipid accumulations were observed by electron microscopy and Oil Red O staining. More mature muscle specimens lacking Nf1 expression taken from the limb-specific Nf1 conditional knockout line showed a 10-fold increase in muscle triglyceride content. Enzyme assays revealed a significant increase in the activities of oxidative metabolism enzymes in the Nf1 mice. Western analyses showed increases in the expression of fatty acid synthase and the hormone leptin, as well as decreased expression of a number of fatty acid transporters in this mouse line. These data support the hypothesis that NF1 is essential for normal muscle function and survival and are the first to suggest a direct link between NF1 and mitochondrial fatty acid metabolism

    Analysis of the ACTN3 heterozygous genotype suggests that α-actinin-3 controls sarcomeric composition and muscle function in a dose-dependent fashion

    No full text
    A common null polymorphism (R577X) in ACTN3 causes α-actinin-3 deficiency in ~18% of the global population. There is no associated disease phenotype, but α-actinin-3 deficiency is detrimental to sprint and power performance in both elite athletes and the general population. However, despite considerable investigation to date, the functional consequences of heterozygosity for ACTN3 are unclear. A subset of studies have shown an intermediate phenotype in 577RX individuals, suggesting dosedependency of α-actinin-3, while others have shown no difference between 577RR and RX genotypes. Here, we investigate the effects of α-actinin-3 expression level by comparing the muscle phenotypes of Actn3 (HET) mice to Actn3 [wild-type (WT)] and Actn3 [knockout (KO)] littermates. We show reduction in α-actinin-3 mRNA and protein in HET muscle compared with WT, which is associated with dose-dependent up-regulation of α-actinin-2, z-band alternatively spliced PDZ-motif andmyotilin at the Z-line, and an incremental shift towards oxidative metabolism. While there is no difference in force generation, HET mice have an intermediate endurance capacity compared with WT and KO. The R577X polymorphism is associated with changes in ACTN3 expression consistent with an additive model in the human genotype-tissue expression cohort, but does not influence any other muscle transcripts, including ACTN2. Overall, ACTN3 influences sarcomeric composition in a dose-dependent fashion in mouse skeletal muscle, which translates directly to function. Variance in fibre type between biopsies likely masks this phenomenon in human skeletal muscle, but we suggest that an additive model is the most appropriate for use in testing ACTN3 genotype associations

    Deficiency of α-actinin-3 is associated with increased susceptibility to contraction-induced damage and skeletal muscle remodeling

    No full text
    Sarcomeric α-actinins (α-actinin-2 and -3) are a major component of the Z-disk in skeletal muscle, where they crosslink actin and other structural proteins to maintain an ordered myofibrillar array. Homozygosity for the common null polymorphism (R577X) in ACTN3 results in the absence of fast fiber-specific α-actinin-3 in ~20% of the general population. α-Actinin-3 deficiency is associated with decreased force generation and is detrimental to sprint and power performance in elite athletes, suggesting that α-actinin-3 is necessary for optimal forceful repetitive muscle contractions. Since Z-disks are the structures most vulnerable to eccentric damage, we sought to examine the effects of α-actinin-3 deficiency on sarcomeric integrity. Actn3 knockout mouse muscle showed significantly increased force deficits following eccentric contraction at 30% stretch, suggesting that α-actinin-3 deficiency results in an increased susceptibility to muscle damage at the extremes of muscle performance. Microarray analyses demonstrated an increase in muscle remodeling genes, which we confirmed at the protein level. The loss of α-actinin-3 and up-regulation of α-actinin-2 resulted in no significant changes to the total pool of sarcomeric α-actinins, suggesting that alterations in fast fiber Z-disk properties may be related to differences in functional protein interactions between α-actinin-2 and α-actinin-3. In support of this, we demonstrated that the Z-disk proteins, ZASP, titin and vinculin preferentially bind to α-actinin-2. Thus, the loss of α-actinin-3 changes the overall protein composition of fast fiber Z-disks and alters their elastic properties, providing a mechanistic explanation for the loss of force generation and increased susceptibility to eccentric damage in α-actinin-3-deficient individuals

    Human KLF17 is a new member of the Sp/KLF family of transcription factors

    Get PDF
    The Sp/KLF transcription factors perform a variety of biological functions, but are related in that they bind GC-box and CACCC-box sequences in DNA via a highly conserved DNA-binding domain. A database homology search, using the zinc finger DNA-binding domain characteristic of the family, has identified human KLF17 as a new family member that is most closely related to KLFs 1-8 and 12. KLF17 appears to be the human orthologue of the previously reported mouse gene, zinc finger protein 393 (Zfp393), although it has diverged significantly. The DNA-binding domain is the most conserved region, suggesting that both the murine and the human forms recognize the same binding sites in DNA and may retain similar functions. We show that human KLF17 can bind G/C-rich sites via its zinc fingers and is able to activate transcription from CACCC-box elements. This is the first report of the DNA-binding characteristics and transactivation activity of human KLF17, which, together with the homology it displays to other KLF proteins, put it in the Sp/KLF family. (c) 2006 Elsevier Inc. All rights reserved
    corecore