12 research outputs found

    Ultrastructural visualization of 3D chromatin folding using volume electron microscopy and DNA in situ hybridization.

    Get PDF
    The human genome is extensively folded into 3-dimensional organization. However, the detailed 3D chromatin folding structures have not been fully visualized due to the lack of robust and ultra-resolution imaging capability. Here, we report the development of an electron microscopy method that combines serial block-face scanning electron microscopy with in situ hybridization (3D-EMISH) to visualize 3D chromatin folding at targeted genomic regions with ultra-resolution (5 × 5 × 30 nm in xyz dimensions) that is superior to the current super-resolution by fluorescence light microscopy. We apply 3D-EMISH to human lymphoblastoid cells at a 1.7 Mb segment of the genome and visualize a large number of distinctive 3D chromatin folding structures in ultra-resolution. We further quantitatively characterize the reconstituted chromatin folding structures by identifying sub-domains, and uncover a high level heterogeneity of chromatin folding ultrastructures in individual nuclei, suggestive of extensive dynamic fluidity in 3D chromatin states

    Mean values (±SD) of skinfold thickness and percentage body fat in male and female Polish adolescents aged 14–18.

    No full text
    <p>* p<0,05 if significant sex difference.</p><p><sup>b</sup> p<0,05 if significant sex difference—parametric.</p><p>Mean values (±SD) of skinfold thickness and percentage body fat in male and female Polish adolescents aged 14–18.</p

    Mean values (±SD) of body measurements in male and female Polish adolescents aged 14–18.

    No full text
    <p>* p<0.05 if significant sex difference—nonparametric.</p><p><sup>b</sup> p<0.05 if significant sex difference—parametric.</p><p>Mean values (±SD) of body measurements in male and female Polish adolescents aged 14–18.</p

    Magnetostratigraphically-calibrated dinoflagellate cyst bioevents for the uppermost Eocene to lowermost Miocene of the western North Atlantic (IODP Expedition 342, Paleogene Newfoundland sediment drifts)

    No full text
    The Oligocene epoch represents a somewhat neglected chapter in paleoclimate and paleoceanographic history, which is at least partially due to the scarcity of complete Oligocene sedimentary archives and poor biostratigraphic age control. Many of the biotic events registered in Oligocene microfossils are strongly diachronous across latitudes as a response to increased global cooling and enhanced meridional temperature gradients. To improve biostratigraphic age control for the Oligocene of the North Atlantic Ocean, we carried out a high-resolution study of dinoflagellate cysts from Integrated Ocean Drilling Program (IODP) Sites U1405, U1406 and U1411 off Newfoundland. Together the sites comprise an apparently complete uppermost Eocene (34.9 Ma) to lowermost Miocene (21.7 Ma) sequence with good magnetostratigraphic age control. This allows us to firmly tie identified dinoflagellate cyst bioevents to the geomagnetic polarity timescale. In the dinoflagellate cyst assemblages studied we have identified and magnetostratigraphically-calibrated ten first and 19 last appearance datums. Our magnetostratigraphically-calibrated dinocyst-based biostratigraphy, which is based on an average sample resolution of a sample every ~ 150 kyrs, will contribute to an improved age framework for future paleoceanographical studies in the higher-latitude North Atlantic
    corecore