25 research outputs found

    Bee Pollinators and Economic Importance of Pollination in Crop Production : Case of Kakamega, Western Kenya

    Get PDF
    Bees are the main animal pollinators of crops worldwide. In Kakamega, Western Kenya, farmers do not manage them for pollination but rely on feral pollinators from the nearby habitats. The ability of these habitats to continuously support bees depends on how they are managed by the adjacent communities. Therefore, the overall aim of this study was to elucidate strategies that can be used to improve bee pollination in the Kakamega farmland. The following objectives were defined: i) determine whether the presence of Kakamega forest affects bee pollinator diversity and foraging activity density in crops in the farmland, ii) establish the contribution of bee pollination to crop productivity, iii) assess the knowledge of farmers about bees and pollination, and iv) quantify the economic benefit that farmers derive from pollination of their crops by bees. The data were collected: i) through observation of bees along a transect from fields near the forest to fields 8 km away, ii) in experimental plots with crops with and without bee-pollination, iii) through questionnaire administration to 352 farmers, and iv) through secondary data, mainly sourced from the Ministry of Agriculture. The number of bee species recorded in the fields near and far from the forest was not statistically different, implying that bee diversity in the farmland does not necessarily depend on the forest. However, the activity density of some bee populations (e.g., Xylocopa calens) was significantly higher in fields near the forest, indicating that the forest might be an important element in providing sufficient pollination services in the system, while the presence of a sufficient number of bees for pollination will depend on how the farmland landscape is managed. The increase in crop yield due to bee pollination, tested on nine crops (beans, cowpeas, green grams, bambara nuts, tomatoes, capsicum, passion fruit, sunflower and squash) ranged from 25% (tomatoes) to more than 99% (squash). Thus, although some crops can produce without bee pollination, presence of bees is important to increase yields, and hence, food security and income. Similarly, bee pollination is essential for reproduction in other crops. There was a significant increase in the quality of seeds (e.g., 21%; sunflower oil) and fruit sizes (e.g., capsicum by 29%, leading to a higher market price). The contribution of bee pollination to the farmers’ income in Kakamega in 2005 was about 50% of the annual value of the selected crops (except squash). This was an almost 40% net benefit, suggesting that bee pollination economically benefits crop producers. More than 98% of the farmers knew different bee species but only about 50% knew of the function of bee pollination in crop production. However, after informing them of the role of pollination, more than 98% were willing to pay an estimated US90perhouseholdannuallyforpollinationoftheircropsbybees.Boththeknowledgeofpollinationandwillingnesstopayamountcorrelatedsignificantlywiththeeducationofthefarmers.ThissuggeststhateducationoffarmersonissuesofbeesandpollinationcanhaveanimpactonbeeconservationintheKakamegafarmland.Therefore,farmersandotherstakeholdersshouldbetrainedontheroleofbeepollinationanditscontributiontotheirwelfareandontheuseofcost−effectivestrategiesforbeeconservation,takingintoconsiderationthelocallyavailableresources.Forexample,landscapemanagementstrategiesarepossible,e.g.,properutilizationofhedgerows,whichareuniqueinthefarmlandandconnectsitwiththeforest.Othermethodssuchasuseoftrapnestsforcavitynestingbeesandintegratedfarmmanagementsystems,e.g.,pestmanagement,shouldalsobeconsidered.Researchshouldbedonetoprovideguidanceonhowbestthesestrategiescanbeadoptedforbeeconservationintheregion.BienenbestašuberunddiewirtschaftlicheBedeutungderBestašubunginderlandwirtschaftlichenProduktion−BeispielKakamega,West−KeniaBienensinddiewichtigstentierischenBestašubervonNutzpflanzenweltweit.InKakamega,West−Kenia,betreibendieBauernkeineBienenhaltung,sondernverlassensichausschließlichaufwildeBestašuberausdennaheliegendenHabitaten.DieFašhigkeitdieserHabitate,dauerhaftalsLebensraumfušrdieBienenzudienen,hašngtdavonab,wiediesedurchdieangrenzendenlokalenDorfgemeinschaftenbewirtschaftetwerden.DasGesamtzieldieserStudiewardaher,StrategienzurVerbesserungderBienenbestašubungimFarmlandinKakamegaherauszuarbeiten.DieZieleimeinzelnenwaren:i)herauszufinden,obdieExistenzdesKakamega−WaldesdieDiversitaštderBienenbestašubersowiedieAktivitaštsdichtederfuttersuchendenBienenindenNutzpflanzenbeeinflusst,ii)denBeitragderBienenbestašubungzurProduktivitaštderNutzpflanzenzubestimmen,iii)dieKenntnissederBauerušberBienenundBestašubungzuermitteln,undiv)denwirtschaftlichenNutzenfušrdieBauerndurchdieBestašubungihrerNutzpflanzendurchdieBienenzuquantifizieren.DieDatenwurdenerhobendurch:i)BeobachtungderBienenentlangeinesTransektsvonFeldernnahedemWaldbiszuFeldernin8kmEntfernung,ii)inVersuchsflašchenmitNutzpflanzenmitundohneBienenbestašubung,iii)durchBefragungen(Fragebogen)von352Bauern,undiv)durchSekundašrdaten,hauptsašchlichvomLandwirtschaftsministerium.DieAnzahlderBienenartenindenFelderninderNašheundweiterentferntvomWaldunterschiedsichnichtsignifikant.Diesdeutetdaraufhin,dassdieBienendiversitaštindenFeldernnichtnotwendigerweisevonderNašhedesWaldesabhašngt.JedochwardieAktivitaštsdichteeinigerBienenvošlker(z.B.Xylocopacalens)signifikanthošherinFeldernnaheamWald,wasdaraufhindeutet,dassderWaldeinwichtigesElementinderBereitstellungvonBestašubungsdienstendurchdieseBienenartendarstellenkošnnte.DerMehrertragderPflanzendurchBienenbestašubungwurdeanneunAnbaupflanzen(Bohne,Kuhbohne,Kichererbse,Bambaranuss,Tomate,Paprika,Passionsfrucht,SonnenblumeundKušrbis)gemessenundlagzwischen25 90 per household annually for pollination of their crops by bees. Both the knowledge of pollination and willingness to pay amount correlated significantly with the education of the farmers. This suggests that education of farmers on issues of bees and pollination can have an impact on bee conservation in the Kakamega farmland. Therefore, farmers and other stakeholders should be trained on the role of bee pollination and its contribution to their welfare and on the use of cost-effective strategies for bee conservation, taking into consideration the locally available resources. For example, landscape management strategies are possible, e.g., proper utilization of hedgerows, which are unique in the farmland and connects it with the forest. Other methods such as use of trap nests for cavity nesting bees and integrated farm management systems, e.g., pest management, should also be considered. Research should be done to provide guidance on how best these strategies can be adopted for bee conservation in the region.BienenbestĂ€uber und die wirtschaftliche Bedeutung der BestĂ€ubung in der landwirtschaftlichen Produktion - Beispiel Kakamega, West-Kenia Bienen sind die wichtigsten tierischen Best Ă€uber von Nutzpflanzen weltweit. In Kakamega, West-Kenia, betreiben die Bauern keine Bienenhaltung, sondern verlassen sich ausschließlich auf wilde BestĂ€uber aus den nahe liegenden Habitaten. Die FĂ€higkeit dieser Habitate, dauerhaft als Lebensraum fĂŒr die Bienen zu dienen, hĂ€ngt davon ab, wie diese durch die angrenzenden lokalen Dorfgemeinschaften bewirtschaftet werden. Das Gesamtziel dieser Studie war daher, Strategien zur Verbesserung der BienenbestĂ€ubung im Farmland in Kakamega herauszuarbeiten. Die Ziele im einzelnen waren: i) herauszufinden, ob die Existenz des Kakamega-Waldes die DiversitĂ€t der BienenbestĂ€uber sowie die AktivitĂ€tsdichte der futtersuchenden Bienen in den Nutzpflanzen beeinflusst, ii) den Beitrag der BienenbestĂ€ubung zur ProduktivitĂ€t der Nutzpflanzen zu bestimmen, iii) die Kenntnisse der Bauer ĂŒber Bienen und BestĂ€ubung zu ermitteln, und iv) den wirtschaftlichen Nutzen fĂŒr die Bauern durch die BestĂ€ubung ihrer Nutzpflanzen durch die Bienen zu quantifizieren. Die Daten wurden erhoben durch: i) Beobachtung der Bienen entlang eines Transekts von Feldern nahe dem Wald bis zu Feldern in 8 km Entfernung, ii) in VersuchsflĂ€chen mit Nutzpflanzen mit und ohne BienenbestĂ€ubung, iii) durch Befragungen (Fragebogen) von 352 Bauern, und iv) durch SekundĂ€rdaten, hauptsĂ€chlich vom Landwirtschaftsministerium. Die Anzahl der Bienenarten in den Feldern in der NĂ€he und weiter entfernt vom Wald unterschied sich nicht signifikant. Dies deutet darauf hin, dass die BienendiversitĂ€t in den Feldern nicht notwendigerweise von der NĂ€he des Waldes abhĂ€ngt. Jedoch war die AktivitĂ€tsdichte einiger Bienenvölker (z.B. Xylocopa calens) signifikant höher in Feldern nahe am Wald, was darauf hindeutet, dass der Wald ein wichtiges Element in der Bereitstellung von BestĂ€ubungsdiensten durch diese Bienenarten darstellen könnte. Der Mehrertrag der Pflanzen durch BienenbestĂ€ubung wurde an neun Anbaupflanzen (Bohne, Kuhbohne, Kichererbse, Bambaranuss, Tomate, Paprika, Passionsfrucht, Sonnenblume und KĂŒrbis) gemessen und lag zwischen 25% (Tomaten) und mehr als 99% (KĂŒrbis). Dies zeigt, dass, obwohl manche Pflanzen ohne BienenbestĂ€ubung produzieren können, die Gegenwart von Bienen den Ertrag und damit Nahrungsmittelsicherheit und Gewinn erhöhen kann. Die QualitĂ€t (z.B. 21%; Sonnenblumenöl) und auch die GrĂ¶ĂŸe der FrĂŒchte (z.B. 29% bei Paprika, wodurch höhere Preise erzielt werden können) waren signifikant erhöht. Der Beitrag der BienenbestĂ€ubung zum Einkommen der Bauern in Kakamega betrug in 2005 ca. 50% des jĂ€hrlichen Wertes der ausgewĂ€hlten Anbaupflanzen (außer KĂŒrbis). Dies war ein fast 40%iger Nettogewinn, und zeigt, dass BienenbestĂ€ubung einen wirtschaftlichen Vorteil fĂŒr die Bauern darstellt. Mehr als 98% der Bauern kannte verschiedene Bienenarten, aber nur ungefĂ€hr 50% wussten von der Funktion der BienenbestĂ€ubung in der landwirtschaftlichen Produktion. Nachdem sie allerdings ĂŒber die Rolle der BestĂ€ubung informiert wurden, waren mehr als 98% bereit, fĂŒr die BestĂ€ubung ihrer Pflanzen ca. US 90 jĂ€hrlich pro Haushalt zu bezahlen. Sowohl die Kenntnisse ĂŒber die BestĂ€ubung als auch die Höhe der Summe, die sie bereit waren zu bezahlen, korrelierte signifikant mit der Bildung der Bauern. Dies deutet darauf hin, dass eine entsprechende Ausbildung zum Schutz der Bienen im Farmland in Kakamega beitragen wĂŒrde. Daher sollten die Bauern und andere Beteiligte eine Ausbildung hinsichtlich der Rolle der BienenbestĂ€ubung und deren Beitrag zu ihrem Wohlergehen sowie ĂŒber kosteneffektive Bienenschutzstrategien erhalten, wobei die lokalen Gegebenheiten berĂŒcksichtigt werden sollten. Strategien zur Bewirtschaftung der Landschaft wĂ€ren u.a. möglich durch die richtige Nutzung der dort einzigartigen Hecken, die die Felder mit dem Wald verbinden. Andere Maßnahmen wie die Nutzung von Fallennestern fĂŒr höhlennistende Bienen und integrierte Farmbewirtschaftung, z.B. in der SchĂ€dlingsbekĂ€mpfung, sollten ebenfalls in ErwĂ€gung gezogen werden. Weitere Forschung sollte aufzeigen, wie diese Strategien fĂŒr den Bienenschutz in dieser Region umgesetzt werden können

    A quantitative approach to the socio-economic valuation of pollinator-friendly practices: a protocol for its use

    Get PDF
    In agro-ecosystems, pollinators are essential for orchard, oilseed crops, horticultural and forage production, as well as the production of seed for many root and fibre crops. Pollinators such as bees, birds and bats affect 35 percent of the world?s crop production, increasing the outputs of 87 of the leading food crops worldwide, plus many plant-derived medicines for the world?s pharmacies. Pollinators contribute significantly to human health; pollinator dependent crops supply major proportions of micronutrients. In terms of ecosystem health, approximately 90 percent of wild plants rely on pollinators that support wider biodiversity.Fil: Garibaldi, Lucas Alejandro. Universidad Nacional de RĂ­o Negro. Sede Andina. Instituto de Investigaciones en Recursos Naturales, AgroecologĂ­a y Desarrollo Rural; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte; ArgentinaFil: Dondo BĂŒhler, Mariana Beatriz. Universidad Nacional de RĂ­o Negro; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte; ArgentinaFil: HipĂłlito de Sousa, Juliana. Universidad Nacional de RĂ­o Negro. Sede Andina. Instituto de Investigaciones en Recursos Naturales, AgroecologĂ­a y Desarrollo Rural; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte; ArgentinaFil: Azzu, Nadine. Food and Agriculture Organization of the United Nations; ItaliaFil: Felipe Viana, Blandina. Universidade Federal da Bahia; BrasilFil: Muo, Kasina. Kenya Agricultural and Livestock Research Organization; Keni

    WorldFAIR Project (D10.1) Agriculture-related pollinator data standards use cases report

    Get PDF
    Although pollination is an essential ecosystem service that sustains life on Earth, data on this vital process is largely scattered or unavailable, limiting our understanding of the current state of pollinators and hindering effective actions for their conservation and sustainable management. In addition to the well-known challenges of biodiversity data management, such as taxonomic accuracy, the recording of biotic interactions like pollination presents further difficulties in proper representation and sharing. Currently, the widely-used standard for representing biodiversity data, Darwin Core, lacks properties that allow for adequately handling biotic interaction data, and there is a need for FAIR vocabularies for properly representing plant-pollinator interactions. Given the importance of mobilising plant-pollinator interaction data also for food production and security, the Research Data Alliance Improving Global Agricultural Data Community of Practice has brought together partners from representative groups to address the challenges of advancing interoperability and mobilising plant-pollinator data for reuse. This report presents an overview of projects, good practices, tools, and examples for creating, managing and sharing data related to plant-pollinator interactions, along with a work plan for conducting pilots in the next phase of the project. We present the main existing data indexing systems and aggregators for plant-pollinator interaction data, as well as citizen science and community-based sourcing initiatives. We also describe current challenges for taxonomic knowledge and present two data models and one semantic tool that will be explored in the next phase. In preparation for the next phase, which will provide best practices and FAIR-aligned guidelines for documenting and sharing plant-pollinator interactions based on pilot efforts with data, this Case Study comprehensively examined the methods and platforms used to create and share such data. By understanding the nature of data from various sources and authors, the alignment of the retrieved datasets with the FAIR principles was also taken into consideration. We discovered that a large amount of data on plant-pollinator interaction is made available as supplementary files of research articles in a diversity of formats and that there are opportunities for improving current practices for data mobilisation in this domain. The diversity of approaches and the absence of appropriate data vocabularies causes confusion, information loss, and the need for complex data interpretation and transformation. Our explorations and analyses provided valuable insights for structuring the next phase of the project, including the selection of the pilot use cases and the development of a ‘FAIR best practices’ guide for sharing plant-pollinator interaction data. This work primarily focuses on enhancing the interoperability of data on plant-pollinator interactions, envisioning its connection with the effort WorldFAIR is undertaking to develop a Cross-Domain Interoperability Framework. Visit WorldFAIR online at http://worldfair-project.eu. WorldFAIR is funded by the EC HORIZON-WIDERA-2021-ERA-01-41 Coordination and Support Action under Grant Agreement No. 101058393

    Detection of the spotted wing drosophila, Drosophila suzukii, in continental sub-Saharan Africa

    Get PDF
    The spotted wing drosophila, Drosophila suzukii Matsumura, is an insect pest of soft-skinned fruit, native to Eastern Asia. Since 2008, a world-wide dispersal of D. suzukii is seen, characterized by the establishment of the pest in many Asian, American and European countries. While the potential for invasion of continental Africa by D. suzukii has been predicted, its presence has only been shown for Morocco in Northern Africa. Knowledge about a possible establishment in other parts of the continent is needed as a basis for pest management. In 2019, we carried out a first survey in three counties in Kenya to monitor for the presence of D. suzukii using traps baited with a blend of apple cider vinegar and red wine. A total of 389 D. suzukii flies were captured in a fruit farm at Nakuru county, with more female flies being trapped than males. We confirmed the morphological identification of D. suzukii using DNA barcoding. In 2020, we performed a follow-up survey at 14 locations in six counties to delimit the distribution of D. suzukii in the main berry growing zones in Kenya. The survey indicated that so far D. suzukii is restricted to Nakuru county where it was initially detected. This is the first study to provide empirical evidence of D. suzukii in continental sub-Saharan Africa, confirming that the pest is expanding its geographic range intercontinentally. Given the high dispersal potential of D. suzukii, a concerted effort to develop management strategies is a necessity for containment of the pest

    WorldFAIR (D10.3) Agricultural biodiversity FAIR data assessment rubrics

    Get PDF
    The WorldFAIR Case Study on Agricultural Biodiversity (WP10) addresses the challenges of advancing interoperability and mobilising plant-pollinator interactions data for reuse. Previous efforts, reported in WorldFAIR Deliverable 10.1, ‘Agriculture-related pollinator data standards use cases report’ (Trekels et al., 2023), provided an overview of projects, good practices, tools, and examples for creating, managing and sharing data related to plant-pollinator interactions. It also outlined a work plan for conducting pilot studies. Deliverable 10.2 (Drucker et al., 2024) presented Agricultural Biodiversity Standards, Best Practices and Guidelines Recommendations. This deliverable presented results from six pilot studies that adopted standards and recommendations from the earlier report. The current report complements the efforts with Agricultural Biodiversity FAIR data assessment rubrics.We introduce a set of FAIR assessment tools tailored to the plant-pollinator interactions domain. These tools are designed to help researchers and institutions evaluate adherence to the FAIR principles. In the discovery phase, we found that a significant amount of data on plant-pollinator interactions is available as supplementary files of research articles, in a diversity of formats such as PDFs, Excel spreadsheets, and text files. The diversity of approaches and the lack of appropriate data vocabularies lead to confusion, information loss, and the need for complex data interpretation and transformation. Our proposed framework primarily targets researchers in this domain who wish to assess the FAIRness of the data they produce and take action to improve it. However, we believe it can also benefit data reviewers, data stewards, data repository managers and librarians dealing with plant-pollinator data. Our approach focuses on being as familiar as possible with the researcher's practices, language, and jargon. Ultimately, we aim to promote data publishing and reuse in the plant-pollinator interactions domain.We present a ‘Rubric for the assessment of Plant-Pollinator Interactions Data’ with examples from the data from the pilots developed in Deliverable 10.2 and in relation to the FAIR Implementation Profile (FIP) created by Work Package 10. We conduct ‘dataset assessments’ of available data from research projects surveyed in the discovery phase. Additionally, we describe in detail the ‘Automated FAIR-enabled Data Reviews’ generated by the Global Biotic Interactions (GLoBI) infrastructure, with examples from the pilots. We believe the tools described in this report will encourage data publishing and reuse in the plant-pollinator interactions domain. Moving from diverse approaches and siloed initiatives to widely available FAIR plant-pollination interactions data for scientists and decision-makers will enable the development of integrative studies that enhance our understanding of species biology, behaviour, ecology, phenology, and evolution

    WorldFAIR (D10.2) Agricultural Biodiversity Standards, Best Practices and Guidelines Recommendations

    Get PDF
    The WorldFAIR Case Study on Agricultural Biodiversity (WP10) addresses the challenges of advancing interoperability and mobilising plant-pollinator interactions data for reuse. Previous efforts, reported in Deliverable 10.1 - from our discovery phase - provided an overview of projects, best practices, tools, and examples for creating, managing and sharing data related to plant-pollinator interactions, along with a work plan for conducting pilot studies. The current report presents the results from the pilot phase of the Case Study, which involved six pilot studies adopting standards and recommendations from the discovery phase. The pilots enabled the handling  of concrete examples and the generation of reusable materials tailored to this domain, as well as providing better estimates for the overall costs of adoption for future projects. Our approach for plant-pollinator data standardisation is based on the widely-used standard for representing biodiversity data, Darwin Core, developed and maintained by the Biodiversity Information Standards (TDWG), in conjunction with a data model and vocabulary proposed by the Brazilian Network of Plant-Pollinator Interactions (REBIPP). The pilot studies also underwent a process of “FAIRification” (i.e., transforming data into a format that adheres to the FAIR data principles) using the Global Biotic Interactions (GloBI, Poelen et al. 2014) platform. Additionally, we present the publishing model for Biotic Interactions developed in collaboration with the Global Biodiversity Information Facility (GBIF), which leads the WorldFAIR Case Study on Biodiversity, as part of the proposed GBIF New Data Model, along with a concrete example of its use by one of the pilots. This effort led to the development of ‘FAIR best practices’ guidelines for sharing plant-pollinator interaction data. The primary focus of this work is to enhance the interoperability of data on plant-pollinator interactions, aligning with WorldFAIR efforts  to develop a Cross-Domain Interoperability Framework. We have successfully promoted the adoption of standards and increased the interoperability of plant-pollinator interactions data, resulting in a process that allows for tracing the provenance of the data, as well as facilitating the reuse of datasets crucial for understanding this essential ecosystem service and its changes due to human impact. Our effort demonstrates there are several possible paths for FAIRification, tailored to institutional needs, and we have shown that different approaches can contribute to promoting data interoperability and data availability for reuse, which is the ultimate goal of this initiative. Consequently, we have successfully ensured FAIR data for understanding plant-pollinator interactions at biologically-relevant scales for crops, with broad participation from initiatives in Europe, South America, Africa, North America, and elsewhere. We have also established concrete guidelines on FAIR data best practices customised for pollination data, metadata, and other digital objects, promoting the scalable adoption of these standards and FAIR data best practices by multiple initiatives. We believe this effort can assist similar initiatives in adopting interoperability standards for this domain and contribute to our understanding of how plant-pollinator interactions contribute to sustain life on Earth. Visit WorldFAIR online at http://worldfair-project.eu. WorldFAIR is funded by the EC HORIZON-WIDERA-2021-ERA-01-41 Coordination and Support Action under Grant Agreement No. 101058393. 

    Colonization of the Mediterranean Basin by the vector biting midge species Culicoides imicola: an old story

    Full text link
    Understanding the demographic history and genetic make-up of colonizing species is critical for inferring population sources and colonization routes. This is of main interest for designing accurate control measures in areas newly colonized by vector species of economically important pathogens. The biting midge Culicoides imicola is a major vector of Orbiviruses to livestock. Historically, the distribution of this species was limited to the Afrotropical region. Entomological surveys first revealed the presence of C. imicola in the south of the Mediterranean basin by the 1970's. Following recurrent reports of massive bluetongue outbreaks since the 1990s, the presence of the species was confirmed in northern areas. In this study, we addressed the chronology and processes of C. imicola colonization in the Mediterranean basin. We characterized the genetic structure of its populations across Mediterranean and African regions using both mitochondrial and nuclear markers, and combined phylogeographical analyses with population genetics and approximate Bayesian computation. We found a west/east genetic differentiation between populations, occurring both within Africa and within the Mediterranean basin. We demonstrated that three of these groups had experienced demographic expansions in the Pleistocene, probably because of climate changes during this period. Finally, we showed that C. imicola could have colonized the Mediterranean basin in the late Pleistocene or early Holocene through a single event of introduction; however we cannot exclude the hypothesis involving two routes of colonization. Thus, the recent bluetongue outbreaks are not linked to C. imicola colonization event, but rather to biological changes in the vector or the virus
    corecore