55 research outputs found

    Genetic characterization of Y-chromosomal STRs in Hazara ethnic group of Pakistan and confirmation of DYS448 null allele

    Get PDF
    Pakistan harbors 18 major ethnic groups and Hazara is one of the distinct but smaller groups comprising 0.090% of the total population. Hazara individuals have typical Mongolian facial features and they claim to be descendants of Genghis Khan's army in the first quarter of the thirteenth century AD. In this study, we genotyped 153 unrelated males living in Quetta, Baluchistan, Pakistan, for a total of 26 (n = 153) to 30 (n = 47) Y-chromosomal STR loci. One hundred forty unique haplotypes were developed for Hazara population using the PowerPlex Y23 loci. The Y-STR locus showed a genetic diversity ranging from 0.2384 to 0.7918, and an overall discrimination capacity (DC) of 91.5%. The Hazara population samples were profiled for three additional Y-STRs (DYS388, DYS449 and DYS460), which increased the number of unique haplotypes to 144 while the DC increased to 94.11% in Hazara Population of Pakistan. Interestingly, null alleles were observed at DYS448 in 25 individuals of Hazara population. The Hazaras showed significant differences from other local populations of Pakistan as well as neighboring populations, but had considerable genetic affinities to Kazakhs and Mongols

    Population data of 23 Y STRs from Manchu population of Liaoning Province, Northeast China

    Get PDF
    Mongol-like-horsemen-turned-merchants from Manchuria are known as Manchus, originally their homeland was centered around what is nowadays the city of Shenyang in Northeast China. Previously, worldwide analysis of Y-chromosomal haplotype diversity for 23 STR loci and Y-STR databases with PowerPlex® Y23 System (Promega Corporation Madison, USA) kit were created with collaborative efforts, but Manchu population data was missing. In current study, PowerPlex® Y23 System loci were examined in 328 unrelated Manchu male individuals from Xiuyan and Huanren Manchu autonomous counties in Liaoning province, to calculate the forensic parameters of the 23 STR loci. A total of 323 different haplotypes were observed on these 23 Y-STR loci. The gene diversities ranged from 0.3820 (DYS391) to 0.9696 (DYS385a, b). The overall haplotype diversity was 0.9999 ± 0.0002 at PowerPlex® Y23 System. Rst pairwise analyses, multidimensional scaling plot, and linear discriminatory analysis showed the genetic structure of Manchu population was significantly different from some of Chinese populations like Tibetan and Uyghur. Results of our study showed that PowerPlex® Y23 System marker set provided substantially stronger discriminatory power in Manchu population of China

    Risks of myeloid malignancies in patients with autoimmune conditions

    Get PDF
    Autoimmune conditions are associated with an elevated risk of lymphoproliferative malignancies, but few studies have investigated the risk of myeloid malignancies. From the US Surveillance Epidemiology and End Results (SEER)-Medicare database, 13 486 myeloid malignancy patients (aged 67+ years) and 160 086 population-based controls were selected. Logistic regression models adjusted for gender, age, race, calendar year and number of physician claims were used to estimate odds ratios (ORs) for myeloid malignancies in relation to autoimmune conditions. Multiple comparisons were controlled for using the Bonferroni correction (P<0.0005). Autoimmune conditions, overall, were associated with an increased risk of acute myeloid leukaemia (AML) (OR 1.29) and myelodysplastic syndrome (MDS, OR 1.50). Specifically, AML was associated with rheumatoid arthritis (OR 1.28), systemic lupus erythematosus (OR 1.92), polymyalgia rheumatica (OR 1.73), autoimmune haemolytic anaemia (OR 3.74), systemic vasculitis (OR 6.23), ulcerative colitis (OR 1.72) and pernicious anaemia (OR 1.57). Myelodysplastic syndrome was associated with rheumatoid arthritis (OR1.52) and pernicious anaemia (OR 2.38). Overall, autoimmune conditions were not associated with chronic myeloid leukaemia (OR 1.09) or chronic myeloproliferative disorders (OR 1.15). Medications used to treat autoimmune conditions, shared genetic predisposition and/or direct infiltration of bone marrow by autoimmune conditions, could explain these excess risks of myeloid malignancies

    The Role of Transporters in the Pharmacokinetics of Orally Administered Drugs

    Get PDF
    Drug transporters are recognized as key players in the processes of drug absorption, distribution, metabolism, and elimination. The localization of uptake and efflux transporters in organs responsible for drug biotransformation and excretion gives transporter proteins a unique gatekeeper function in controlling drug access to metabolizing enzymes and excretory pathways. This review seeks to discuss the influence intestinal and hepatic drug transporters have on pharmacokinetic parameters, including bioavailability, exposure, clearance, volume of distribution, and half-life, for orally dosed drugs. This review also describes in detail the Biopharmaceutics Drug Disposition Classification System (BDDCS) and explains how many of the effects drug transporters exert on oral drug pharmacokinetic parameters can be predicted by this classification scheme

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    Get PDF
    Aims  The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results  Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion  After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p

    Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial

    Get PDF
    Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402
    corecore