7 research outputs found

    Toxic Fake News Detection and Classification for Combating COVID-19 Misinformation

    No full text
    The emergence of COVID-19 has led to a surge in fake news on social media, with toxic fake news having adverse effects on individuals, society, and governments. Detecting toxic fake news is crucial, but little prior research has been done in this area. This study aims to address this gap and identify toxic fake news to save time spent on examining nontoxic fake news. To achieve this, multiple datasets were collected from different online social networking platforms such as Facebook and Twitter. The latest samples were obtained by collecting data based on the topmost keywords extracted from the existing datasets. The instances were then labeled as toxic/nontoxic using toxicity analysis, and traditional machine-learning (ML) techniques such as linear support vector machine (SVM), conventional random forest (RF), and transformer-based ML techniques such as bidirectional encoder representations from transformers (BERT) were employed to design a toxic-fake news detection (FND) and classification system. As per the experiments, the linear SVM method outperformed BERT SVM, RF, and BERT RF with an accuracy of 92% and -score, -score, and -score of 95%, 85%, and 87%, respectively. Upon comparison, the proposed approach has either suppressed or achieved results very close to the state-of-the-art techniques in the literature by recording the best values on performance metrics such as accuracy, F1-score, precision, and recall for linear SVM. Overall, the proposed methods have shown promising results and urge further research to restrain toxic fake news. In contrast to prior research, the presented methodology leverages toxicity-oriented attributes and BERT-based sequence representations to discern toxic counterfeit news articles from nontoxic ones across social media platforms

    Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990–2021 : a systematic analysis from the Global Burden of Disease Study 2021

    Get PDF
    Background Lower respiratory infections (LRIs) are a major global contributor to morbidity and mortality. In 2020–21, non-pharmaceutical interventions associated with the COVID-19 pandemic reduced not only the transmission of SARS-CoV-2, but also the transmission of other LRI pathogens. Tracking LRI incidence and mortality, as well as the pathogens responsible, can guide health-system responses and funding priorities to reduce future burden. We present estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 of the burden of non-COVID-19 LRIs and corresponding aetiologies from 1990 to 2021, inclusive of pandemic effects on the incidence and mortality of select respiratory viruses, globally, regionally, and for 204 countries and territories. Methods We estimated mortality, incidence, and aetiology attribution for LRI, defined by the GBD as pneumonia or bronchiolitis, not inclusive of COVID-19. We analysed 26 259 site-years of mortality data using the Cause of Death Ensemble model to estimate LRI mortality rates. We analysed all available age-specific and sex-specific data sources, including published literature identified by a systematic review, as well as household surveys, hospital admissions, health insurance claims, and LRI mortality estimates, to generate internally consistent estimates of incidence and prevalence using DisMod-MR 2.1. For aetiology estimation, we analysed multiple causes of death, vital registration, hospital discharge, microbial laboratory, and literature data using a network analysis model to produce the proportion of LRI deaths and episodes attributable to the following pathogens: Acinetobacter baumannii, Chlamydia spp, Enterobacter spp, Escherichia coli, fungi, group B streptococcus, Haemophilus influenzae, influenza viruses, Klebsiella pneumoniae, Legionella spp, Mycoplasma spp, polymicrobial infections, Pseudomonas aeruginosa, respiratory syncytial virus (RSV), Staphylococcus aureus, Streptococcus pneumoniae, and other viruses (ie, the aggregate of all viruses studied except influenza and RSV), as well as a residual category of other bacterial pathogens. Findings Globally, in 2021, we estimated 344 million (95% uncertainty interval [UI] 325–364) incident episodes of LRI, or 4350 episodes (4120–4610) per 100 000 population, and 2·18 million deaths (1·98–2·36), or 27·7 deaths (25·1–29·9) per 100 000. 502 000 deaths (406 000–611 000) were in children younger than 5 years, among which 254 000 deaths (197 000–320 000) occurred in countries with a low Socio-demographic Index. Of the 18 modelled pathogen categories in 2021, S pneumoniae was responsible for the highest proportions of LRI episodes and deaths, with an estimated 97·9 million (92·1–104·0) episodes and 505 000 deaths (454 000–555 000) globally. The pathogens responsible for the second and third highest episode counts globally were other viral aetiologies (46·4 million [43·6–49·3] episodes) and Mycoplasma spp (25·3 million [23·5–27·2]), while those responsible for the second and third highest death counts were S aureus (424 000 [380 000–459 000]) and K pneumoniae (176 000 [158 000–194 000]). From 1990 to 2019, the global all-age non-COVID-19 LRI mortality rate declined by 41·7% (35·9–46·9), from 56·5 deaths (51·3–61·9) to 32·9 deaths (29·9–35·4) per 100 000. From 2019 to 2021, during the COVID-19 pandemic and implementation of associated non-pharmaceutical interventions, we estimated a 16·0% (13·1–18·6) decline in the global all-age non-COVID-19 LRI mortality rate, largely accounted for by a 71·8% (63·8–78·9) decline in the number of influenza deaths and a 66·7% (56·6–75·3) decline in the number of RSV deaths. Interpretation Substantial progress has been made in reducing LRI mortality, but the burden remains high, especially in low-income and middle-income countries. During the COVID-19 pandemic, with its associated non-pharmaceutical interventions, global incident LRI cases and mortality attributable to influenza and RSV declined substantially. Expanding access to health-care services and vaccines, including S pneumoniae, H influenzae type B, and novel RSV vaccines, along with new low-cost interventions against S aureus, could mitigate the LRI burden and prevent transmission of LRI-causing pathogens. Funding Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care (UK)

    Global Burden of Cardiovascular Diseases and Risks, 1990-2022

    No full text

    Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. Methods: Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. Findings: In 2021, there were 529 million (95% uncertainty interval [UI] 500-564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8-6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7-9·9]) and, at the regional level, in Oceania (12·3% [11·5-13·0]). Nationally, Qatar had the world's highest age-specific prevalence of diabetes, at 76·1% (73·1-79·5) in individuals aged 75-79 years. Total diabetes prevalence-especially among older adults-primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1-96·8) of diabetes cases and 95·4% (94·9-95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5-71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5-30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22-1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1-17·6) in north Africa and the Middle East and 11·3% (10·8-11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. Interpretation: Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers. Funding: Bill & Melinda Gates Foundation
    corecore