3,615 research outputs found
Ocean acidification in the aftermath of the Marinoan glaciation
Boron isotope patterns preserved in cap carbonates deposited in the aftermath of the younger Cryogenian (Marinoan, ca. 635 Ma) glaciation confirm a temporary ocean acidification event on the continental margin of the southern Congo craton, Namibia. To test the significance of this acidification event and reconstruct Earth’s global seawater pH states at the Cryogenian-Ediacaran transition, we present a new boron isotope data set recorded in cap carbonates deposited on the Yangtze Platform in south China and on the Karatau microcontinent in Kazakhstan. Our compiled δ11B data reveal similar ocean pH patterns for all investigated cratons and confirm the presence of a global and synchronous ocean acidification event during the Marinoan deglacial period, compatible with elevated postglacial pCO2 concentrations. Differences in the details of the ocean acidification event point to regional distinctions in the buffering capacity of Ediacaran seawater
Boron isotope composition of geothermal fluids and borate minerals from salar deposits (central Andes/NW Argentina)
We have measured the boron concentration and isotope composition of regionally expansive borate deposits and geothermal fluids from the Cenozoic geothermal system of the Argentine Puna Plateau in the central Andes. The borate minerals borax, colemanite, hydroboracite, inderite, inyoite, kernite, teruggite, tincalconite, and ulexite span a wide range of d 11B values from 229.5 to 20.3‰, whereas fluids cover a range from 218.3 to 0.7‰. The data from recent coexisting borate minerals and fluids allow for the calculation of the isotope composition of the ancient mineralizing fluids and thus for the constraint of the isotope composition of the source rocks sampled by the fluids. The boron isotope composition of ancient mineralizing fluids appears uniform throughout the section of precipitates at a given locality and similar to values obtained from recent thermal fluids. These findings support models that suggest uniform and stable climatic, magmatic, and tectonicconditions during the past 8 million years in this part of the central Andes. Boron in fluids is derived from different sources, depending on the drainage system and local country rocks. One significant boron source is the Paleozoic basement, which has a whole-rock isotopic composition of d 11B ¼ 28.9 ^ 2.2‰ (1 SD); another important boron contribution comes from Neogene-Pleistocene ignimbrites (d 11B ¼ 23.8 ^ 2.8‰, 1 SD). Cenozoic andesites and Mesozoic limestones (d 11B # þ 8‰) provide a potential third boron source.Fil: Kasemann, Simone A.. German Research Centre for Geosciences; AlemaniaFil: Meixner, Anette. German Research Centre for Geosciences; AlemaniaFil: Erzinger, Jörg. German Research Centre for Geosciences; AlemaniaFil: Viramonte, Jose German. Universidad Nacional de Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alonso, Ricardo Narciso. Universidad Nacional de Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Franz, Gerhard. Technishe Universitat Berlin; Alemani
A comparison of SNARF-1 and skeletal δ11B estimates of calcification media pH in tropical coral
Funding: SIMS analyses were supported by the Natural Environment Research Council, UK (IMF689/0519).Coral skeletal boron geochemistry offers opportunities to probe the pH of the calcification media (pHCM) of modern and fossil specimens, to estimate past changes in seawater pH and to explore the biomineralisation response to future ocean acidification. In this research we grew 2 Stylophora pistillata coral microcolonies over glass coverslips to allow analysis of the pH sensitive dye SNARF-1, in the extracellular calcification medium at the growing edge of colonies where the first aragonite crystals are formed, under both light and dark conditions. We use secondary ion mass spectrometry (SIMS) to measure the boron isotopic composition (δ11B) of the skeleton close to the growth edge after 2 to 3 days of additional calcification had enlarged the crystals until they joined, generating a continuous sheet of aragonite. Mean skeletal δ11B-pHCM estimates are higher than those of by SNARF-1 by 0.35 to 0.44 pH units. These differences either reflect real variations in the pH of the calcification media associated with each measurement technique or indicate other changes in the biomineralisation process which influence skeletal δ11B. SNARF-1 measures directly the pH of the extracellular calcification medium while skeletal δ11B analyses aragonite potentially formed via both extracellular and intracellular biomineralisation pathways. Analysis of a third coral specimen, also growing on a glass slide but with a 5 cm long branch, indicated good agreement between the δ11B value of the apex of the branch and the skeletal growth edge. The tissues overlying both these regions were transparent indicating they had low symbiont densities. This suggests that the biomineralisation process is broadly comparable between these sites and that studies growing corals over glass slides/coverslips provide representative data for the colony apex.Publisher PDFPeer reviewe
Southward-Directed Subduction of the Farallon–Aluk Spreading Ridge and Its Impact on Subduction Mechanics and Andean Arc Magmatism: Insights From Geochemical and Seismic Tomographic Data
Since the initial proposal of the past existence of a southward-directed mid-ocean ridge–subduction interaction in the Andes during Late Cretaceous–Paleogene times, several studies have been devoted to uncover the tectonomagmatic evidence of this process. The collision of a spreading ridge against a subduction margin provokes important tectonomagmatic changes, including, between them, variations in arc-related magmatic activity and in the plate-margin stress regime. However, the cryptic nature of the geological record often hampers assessing the influence and along-strike evolution of this process. In this study, we integrate new isotopic data with previous field and geochemical data on Andean arc-related magmatism, together with seismic tomography to track the main tectonic changes that affected the Andes between 35° and 42°S from Latest Cretaceous to early Miocene times. In particular, we carry out a new tomotectonic analysis combining the regional bedrock record of the Late Cretaceous–early Miocene arc with upper–lower mantle seismic tomography. This analysis allowed us to unravel the main geodynamic changes that affected the Andean active-margin when the Farallon–Aluk spreading ridge was subducting. Besides, new isotopic analyses reveal the variable nature of the mantle source that fed the Late Cretaceous–early Miocene arc. Hence, the integration of geological, geochemical, and geophysical data, together with new isotopic data studying the geochemical composition of the main Andean arc-related magmatic units in three main periods – (1) Latest Cretaceous–early Paleocene, (2) Early Paleocene–late Eocene, and (3) Late Eocene–early Miocene – allow us to understand with an unprecedented detail the geochemical and spatiotemporal evolution of the passage of this spreading ridge along the Andean margin.Fil: Iannelli, Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Fernández Paz, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Litvak, Vanesa Dafne. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Gianni, Guido Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Fennell, Lucas Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: González, Javiera. Universidad de Concepción; ChileFil: Lucassen, Friedrich. Universitat Bremen; AlemaniaFil: Kasemann, Simone. Universitat Bremen; AlemaniaFil: Oliveros, Verónica. Universidad de Concepción; ChileFil: Folguera Telichevsky, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentin
Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: insights from the O and Hf isotopic composition of zircon
AbstractSubduction zones, such as the Andean convergent margin of South America, are sites of active continental growth and crustal recycling. The composition of arc magmas, and therefore new continental crust, reflects variable contributions from mantle, crustal and subducted reservoirs. Temporal (Ma) and spatial (km) variations in these contributions to southern Central Andean arc magmas are investigated in relation to the changing plate geometry and geodynamic setting of the southern Central Andes (28–32°S) during the Cenozoic. The in-situ analysis of O and Hf isotopes in zircon, from both intrusive (granitoids) and extrusive (basaltic andesites to rhyolites) Late Cretaceous – Late Miocene arc magmatic rocks, combined with high resolution U–Pb dating, demonstrates distinct across-arc variations. Mantle-like δ18O(zircon) values (+5.4‰ to +5.7‰ (±0.4 (2σ))) and juvenile initial εHf(zircon) values (+8.3 (±0.8 (2σ)) to +10.0 (±0.9 (2σ))), combined with a lack of zircon inheritance suggests that the Late Cretaceous (∼73Ma) to Eocene (∼39Ma) granitoids emplaced in the Principal Cordillera of Chile formed from mantle-derived melts with very limited interaction with continental crustal material, therefore representing a sustained period of upper crustal growth. Late Eocene (∼36Ma) to Early Miocene (∼17Ma) volcanic arc rocks present in the Frontal Cordillera have ‘mantle-like’ δ18O(zircon) values (+4.8‰ (±0.2 (2σ) to +5.8‰ (±0.5 (2σ))), but less radiogenic initial εHf(zircon) values (+1.0 (±1.1 (2σ)) to +4.0 (±0.6 (2σ))) providing evidence for mixing of mantle-derived melts with the Late Paleozoic – Early Mesozoic basement (up to ∼20%). The assimilation of both Late Paleozoic – Early Mesozoic Andean crust and a Grenville-aged basement is required to produce the higher than ‘mantle-like’ δ18O(zircon) values (+5.5‰ (±0.6 (2σ) to +7.2‰ (±0.4 (2σ))) and unradiogenic, initial εHf(zircon) values (−3.9 (±1.0 (2σ)) to +1.6 (±4.4 (2σ))), obtained for the Late Oligocene (∼23Ma) to Late Miocene (∼9Ma) magmatic rocks located in the Argentinean Precordillera, and the Late Miocene (∼6Ma) volcanic rocks present in the Frontal Cordillera. The observed isotopic variability demonstrates that the assimilation of pre-existing continental crust, which varies in both age and composition over the Andean Cordillera, plays a dominant role in modifying the isotopic composition of Late Eocene to Late Miocene mantle-derived magmas, implying significant crustal recycling. The interaction of arc magmas with distinct basement terranes is controlled by the migration of the magmatic arc due to the changing geodynamic setting, as well as by the tectonic shortening and thickening of the Central Andean crust over the latter part of the Cenozoic
Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV
The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8 TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes
The tectonic and geodynamic setting of the southern Central Andean convergent margin changed significantly between the Late Cretaceous and the Late Miocene, influencing magmatic activity and its geochemical composition. Here we investigate how these changes, which include changing slab-dip angle and convergence angles and rates, have influenced the contamination of the arc magmas with crustal material. Whole rock geochemical data for a suite of Late Cretaceous to Late Miocene arc rocks from the Pampean flat-slab segment (29–31 °S) of the southern Central Andes is presented alongside petrographic observations and high resolution age dating. In-situ U–Pb dating of magmatic zircon, combined with Ar–Ar dating of plagioclase, has led to an improved regional stratigraphy and provides an accurate temporal constraint for the geochemical data.
A generally higher content of incompatible trace elements (e.g. Nb/Zr ratios from 0.019 to 0.083 and Nb/Yb from 1.5 to 16.4) is observed between the Late Cretaceous (~ 72 Ma), when the southern Central Andean margin is suggested to have been in extension, and the Miocene when the thickness of the continental crust increased and the angle of the subducting Nazca plate shallowed. Trace and rare earth element compositions obtained for the Late Cretaceous to Late Eocene arc magmatic rocks from the Principal Cordillera of Chile, combined with a lack of zircon inheritance, suggest limited assimilation of the overlying continental crust by arc magmas derived from the mantle wedge. A general increase in incompatible, fluid-mobile/immobile (e.g., Ba/Nb) and fluid-immobile/immobile (e.g., Nb/Zr) trace element ratios is attributed to the influence of the subducting slab on the melt source region and/or the influx of asthenospheric mantle.
The Late Oligocene (~ 26 Ma) to Early Miocene (~ 17 Ma), and Late Miocene (~ 6 Ma) arc magmatic rocks present in the Frontal Cordillera show evidence for the bulk assimilation of the Permian–Triassic (P–T) basement, both on the basis of their trace and rare earth element compositions and the presence of P–T inherited zircon cores. Crustal reworking is also identified in the Argentinean Precordillera; Late Miocene (12–9 Ma) arc magmatic rocks display distinct trace element signatures (specifically low Th, U and REE concentrations) and contain inherited zircon cores with Proterozoic and P–T ages, suggesting the assimilation of both the P–T basement and a Grenville-aged basement. We conclude that changing geodynamics play an important role in determining the geochemical evolution of magmatic rocks at convergent margins and should be given due consideration when evaluating the petrogenesis of arc magmas.</p
- …