80 research outputs found

    Efficacy and safety of levofloksacin treatment of community - acquired pneumonia in hospitalized patients

    Get PDF
    The aim of this prospective study was to determine the efficacy and safety of levofloxacin in the treatment of community-aquired pneumonia (CAP) in outpatient with ineffective antibiotic management, requiring hospitalization. The examined group included 25 patients (11 M, 14 F) of mean age 70 &plusmn; 17,5 years with abnormalities in X-ray on admission to hospital. Risk factors for pneumonia and previous antibacterial therapy were analyzed. In the hospital they were treated for 7 days with levofloxacin 500 mg twice a day administred intravenously. Body temperature, blood cell count, ESR, CRP, AST, ALT, LDH, CPK, creatine, urea, potassium, sodium, ABG, and ECG were measured on admission and in the 3-rd and 7-th day of therapy. The chest X-rays were performed and analyzed on hospital discharge. 18 patients were aged > 65 yrs, cardiovascular diseases co-existed in 14, COPD in 9, smoking habit in 12, renal failure in 3, diabetes in 3 and alkohol addiction in 1 cases. On admission 4 patients had respiratory failure, 10 hypoxaemia. During therapy a decrease of body temperature (p < 0,001), concentration of CRP (p < 0,004) and LDH (p < 0,03), CPK (p < 0,04) and increase of PaO2 (p < 0,012) were observed. The changes of other parameters were not statistically significant. We did not observe any changes in ECG. Ond ischarge from the hospital in 16 patients complete regression and in 6 patients partial regression of lesions in chest X-ray examination were observed. In 3 patients levofloxacin therapy was non effective: in 2 because of persistent high body temperature after 3 days of treatment and in 1 patients because of recurrent of fever. Adverse events were mild. Transient exacerbation of renal failure was observed in 3 patients. Our study demonstrates that levofloxacine ni dose 2x500 mg given intravenously for 7 days is effective and safe in treatment of CAP in patients with previously ineffective antibacterial therapy

    Liquid Water Oceans in Ice Giants

    Get PDF
    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune's deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be ~ 0.8 g/cm^3. Such a high density is inconsistent with gravitational data obtained during the Voyager flyby. As Neptune cools, the probability of a liquid ocean increases. Extrasolar "hot Neptunes," which presumably migrate inward toward their parent stars, cannot harbor liquid water oceans unless they have lost almost all of the hydrogen and helium from their deep interiors.Comment: 31 pages, 11 figures, accepted for publication in Icaru

    A composite approach to produce reference datasets for extratropical cyclone tracks: application to Mediterranean cyclones

    Get PDF
    Many cyclone detection and tracking methods (CDTMs) have been developed in the past to study the climatology of extratropical cyclones. However, all CDTMs have different approaches in defining and tracking cyclone centers. This naturally leads to cyclone track climatologies with inconsistent physical characteristics. More than that, it is typical for CDTMs to produce a non-negligible number of tracks of weak atmospheric features, which do not correspond to large-scale or mesoscale vortices and can differ significantly between CDTMs. Lack of consensus in CDTM outputs and the inclusion of significant numbers of uncertain tracks therein have long prohibited the production of a commonly accepted reference dataset of extratropical cyclone tracks. Such a dataset could allow comparable results on the analysis of storm track climatologies and could also contribute to the evaluation and improvement of CDTMs. To cover this gap, we present a new methodological approach that combines overlapping tracks from different CDTMs and produces composite tracks that concentrate the agreement of more than one CDTM. In this study we apply this methodology to the outputs of 10 well-established CDTMs which were originally applied to ERA5 reanalysis in the 42-year period of 1979-2020. We tested the sensitivity of our results to the spatiotemporal criteria that identify overlapping cyclone tracks, and for benchmarking reasons, we produced five reference datasets of subjectively tracked cyclones. Results show that climatological numbers of composite tracks are substantially lower than the ones of individual CDTMs, while benchmarking scores remain high (i.e., counting the number of subjectively tracked cyclones captured by the composite tracks). Our results show that composite tracks tend to describe more intense and longer-lasting cyclones with more distinguished early, mature and decay stages than the cyclone tracks produced by individual CDTMs. Ranking the composite tracks according to their confidence level (defined by the number of contributing CDTMs), it is shown that the higher the confidence level, the more intense and long-lasting cyclones are produced. Given the advantage of our methodology in producing cyclone tracks with physically meaningful and distinctive life stages, we propose composite tracks as reference datasets for climatological research in the Mediterranean. The Supplement provides the composite Mediterranean tracks for all confidence levels, and in the conclusion we discuss their adequate use for scientific research and applications

    Review article: A European perspective on wind and storm damage – from the meteorological background to index-based approaches to assess impacts

    Get PDF
    Wind and windstorms cause severe damage to natural and human-made environments. Thus, wind-related risk assessment is vital for the preparation and mitigation of calamities. However, the cascade of events leading to damage depends on many factors that are environment-specific and the available methods to address wind-related damage often require sophisticated analysis and specialization. Fortunately, simple indices and thresholds are as effective as complex mechanistic models for many applications. Nonetheless, the multitude of indices and thresholds available requires a careful selection process according to the target sector. Here, we first provide a basic background on wind and storm formation and characteristics, followed by a comprehensive collection of both indices and thresholds that can be used to predict the occurrence and magnitude of wind and storm damage. We focused on five key sectors: forests, urban areas, transport, agriculture and wind-based energy production. For each sector we described indices and thresholds relating to physical properties such as topography and land cover but also to economic aspects (e.g. disruptions in transportation or energy production). In the face of increased climatic variability, the promotion of more effective analysis of wind and storm damage could reduce the impact on society and the environment.</p

    Prisoners of the Capitalist Machine: Captivity and the Corporate Engineer

    Get PDF
    This chapter will focus on how engineering practice is conditioned by an economic system which promotes production for profit and economic growth as an end in itself. As such it will focus on the notion of the captivity of engineering which emanates from features of the economic system. By drawing on Critical Realism and a Marxist literature, and by focusing on the issues of safety and sustainability (in particular the issue of climate change), it will examine the extent to which disasters and workplace accidents result from the economic imperative for profitable production and how efforts by engineers to address climate change are undermined by an on-going commitment to growth. It will conclude by arguing that the structural constraints on engineering practice require new approaches to teaching engineers about ethics and social responsibility. It will argue that Critical Realism offers a framework for the teaching of engineering ethics which would pay proper attention to the structural context of engineers work without eliminating the possibility of engineers working for radical change

    A composite approach to produce reference datasets for extratropical cyclone tracks: application to Mediterranean cyclones

    Get PDF
    Many cyclone detection and tracking methods (CDTMs) have been developed in the past to study the climatology of extratropical cyclones. However, all CDTMs have different approaches in defining and tracking cyclone centers. This naturally leads to cyclone track climatologies with inconsistent physical characteristics. More than that, it is typical for CDTMs to produce a non-negligible number of tracks of weak atmospheric features, which do not correspond to large-scale or mesoscale vortices and can differ significantly between CDTMs. Lack of consensus in CDTM outputs and the inclusion of significant numbers of uncertain tracks therein have long prohibited the production of a commonly accepted reference dataset of extratropical cyclone tracks. Such a dataset could allow comparable results on the analysis of storm track climatologies and could also contribute to the evaluation and improvement of CDTMs. To cover this gap, we present a new methodological approach that combines overlapping tracks from different CDTMs and produces composite tracks that concentrate the agreement of more than one CDTM. In this study we apply this methodology to the outputs of 10 well-established CDTMs which were originally applied to ERA5 reanalysis in the 42-year period of 1979–2020. We tested the sensitivity of our results to the spatiotemporal criteria that identify overlapping cyclone tracks, and for benchmarking reasons, we produced five reference datasets of subjectively tracked cyclones. Results show that climatological numbers of composite tracks are substantially lower than the ones of individual CDTMs, while benchmarking scores remain high (i.e., counting the number of subjectively tracked cyclones captured by the composite tracks). Our results show that composite tracks tend to describe more intense and longer-lasting cyclones with more distinguished early, mature and decay stages than the cyclone tracks produced by individual CDTMs. Ranking the composite tracks according to their confidence level (defined by the number of contributing CDTMs), it is shown that the higher the confidence level, the more intense and long-lasting cyclones are produced. Given the advantage of our methodology in producing cyclone tracks with physically meaningful and distinctive life stages, we propose composite tracks as reference datasets for climatological research in the Mediterranean. The Supplement provides the composite Mediterranean tracks for all confidence levels, and in the conclusion we discuss their adequate use for scientific research and applications.</p
    • 

    corecore