17 research outputs found

    Filtration properties of staple fibre thermo-bonded nonwoven fabrics

    Get PDF
    Thermal bonded polyester staple fibre nonwoven fabrics have been produced, considering different proportions of binder fibres, directions of web laid as variables, and bonding time and bonding temperature as constant. The influence of process variables on fabric properties, such as bursting strength, air permeability, bubble point diameter, mean flow pore diameter and filtration efficiency with three different particle (1, 0.5, and 0.3”) along with the overall filtration efficiency have been tested and the results are compared with spun laced nonwoven fabrics. The fibres are oriented in cross and parallel directions, this arrangement of fibres leads to increase in bursting strength. The trend in air permeability of cross-laid web fabrics is found similar to spunlaced fabrics. The pore sizes of the thermal bonded fabrics have been minimized by laying the web in cross direction and increasing the binder fibre proportion; it has minimum variation with spunlaced fabrics. Aerosols of different particles are fed to the upstream of the filters with the face velocity of 16.6 cm/s which is then maintained as constant. The maximum filtration efficiency achieved is found to be 93.13% which is around 13% higher than that of the spunlaced fabric. For 80g/m2 fabrics with 0.3” particles, the filtration efficiency of spun laced fabric is only 38% which is around one and a half time lesser than 80 g/m2 of thermal bonded fabric; 90g/m2 fabrics show equal and better properties than 100g/m2 fabrics

    On the flow unsteadiness and operational characteristics of a novel supersonic fluidic oscillator

    Full text link
    A novel supersonic jet oscillating method is investigated both experimentally and numerically. A rectangular primary supersonic jet is issued into a confined chamber with sudden enlargement. Secondary control jets are issued from the top, and bottom backwards-facing step regions formed due to sudden enlargement. The secondary jet also expands in the confined chamber shrouding the primary jet from the top and bottom sides. The primary jet is oscillated in the transverse direction by blowing the secondary jets in the streamwise direction in a pulsating manner with a phase shift. The out-of-phase secondary jet blowing causes the primary jet to periodically adhere to the upper and lower part of the confined chamber, causing flapping of the primary jet and acting as a supersonic fluidic oscillator. The supersonic jet oscillation characteristics are experimentally investigated using shadowgraph type flow visualization technique and steady and unsteady pressure measurements. Quantitative analysis of the shadowgraph images using the construction of y−ty-t and y−fy-f plots reveals the presence of periodic jet oscillation with a discrete dominant frequency similar to the secondary jet excitation frequency. The existence of linearity between the excitation frequency and the flapping jet frequency on the low-frequency (0.66−6.60.66-6.6 Hz) side is first proven experimentally. Later, the high-frequency (16.67−500016.67-5000 Hz) operation extent of the supersonic fluidic oscillator is further demonstrated using unsteady computational studies owing to the existing experimental facility's limitations. It is found from the computational studies that there exists a limiting oscillation frequency for the present fluidic oscillator (nearly 4.4864.486 kHz with the particular geometric size and the injection momentum considered in the present study).Comment: 11 Figures. Relevant multimedia views and supplementary videos are embedded in the pdf itself. The article is prepared for submission to Phys. Fluid

    Preparation and Characterization of Silver Nanoparticle/Aloe Vera Incorporated PCL/PEO matrix for wound dressing application

    Get PDF
    35-44Polymeric wound dressing materials have remarkable mechanical, structural, and biocompatible behavior. In this work, a polymer matrix of Polycaprolactone (PCL)/Polyethylene Oxide (PEO) incorporated with Aloe Vera (AV) extract and silver nanoparticles were prepared for wound dressing application. Initially, the phytochemicals from AV were extracted by Soxhlet apparatus, and then the aloe extract was used as a reducing agent to synthesize silver nanoparticles (Ag NP). Ag NP's formation was confirmed by the presence of a characteristic UV absorbance peak at 420 nm. Ag NP's average diameter and shape were found to be between 10-50 nm and spherical, respectively. AV extract and Ag NP were incorporated into PCL/PEO polymer solution to prepare the polymer matrix by solution casting method. Box-Behnken design (BBD) was used to study the effect of Ag NP concentration, AV extract percentage, and PEO weight percentage concerning PCL on wound dressing application. Water Vapor Transmission Rate (WVTR) and swelling properties of all the sample were tested and found that the PEO and AV extract plays a major role in both swelling and WVTR irrespective of Ag NP concentration. The antimicrobial property of synthesized Ag NP was studied against gram-negative bacteria Escherichia coli with control samples (PCL and PCL/PEO), Ag NP with 150 mg concentration showed a higher zone of inhibition than the other concentrations. Thus, the prepared PCL/PEO polymer matrix incorporated with AV extract and Ag NP can be used as an effective wound dressing material

    Preparation and Characterization of Silver Nanoparticle/Aloe Vera Incorporated PCL/PEO matrix for wound dressing application

    Get PDF
    Polymeric wound dressing materials have remarkable mechanical, structural, and biocompatible behavior. In this work, a polymer matrix of Polycaprolactone (PCL)/Polyethylene Oxide (PEO) incorporated with Aloe Vera (AV) extract and silver nanoparticles were prepared for wound dressing application. Initially, the phytochemicals from AV were extracted by Soxhlet apparatus, and then the aloe extract was used as a reducing agent to synthesize silver nanoparticles (Ag NP). Ag NP's formation was confirmed by the presence of a characteristic UV absorbance peak at 420 nm. Ag NP's average diameter and shape were found to be between 10-50 nm and spherical, respectively. AV extract and Ag NP were incorporated into PCL/PEO polymer solution to prepare the polymer matrix by solution casting method. Box-Behnken design (BBD) was used to study the effect of Ag NP concentration, AV extract percentage, and PEO weight percentage concerning PCL on wound dressing application. Water Vapor Transmission Rate (WVTR) and swelling properties of all the sample were tested and found that the PEO and AV extract plays a major role in both swelling and WVTR irrespective of Ag NP concentration. The antimicrobial property of synthesized Ag NP was studied against gram-negative bacteria Escherichia coli with control samples (PCL and PCL/PEO), Ag NP with 150 mg concentration showed a higher zone of inhibition than the other concentrations. Thus, the prepared PCL/PEO polymer matrix incorporated with AV extract and Ag NP can be used as an effective wound dressing material

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Filtration properties of staple fibre thermo-bonded nonwoven fabrics

    No full text
    62-66Thermal bonded polyester staple fibre nonwoven fabrics have been produced, considering different proportions of binder fibres, directions of web laid as variables, and bonding time and bonding temperature as constant. The influence of process variables on fabric properties, such as bursting strength, air permeability, bubble point diameter, mean flow pore diameter and filtration efficiency with three different particle (1, 0.5, and 0.3”) along with the overall filtration efficiency have been tested and the results are compared with spun laced nonwoven fabrics. The fibres are oriented in cross and parallel directions, this arrangement of fibres leads to increase in bursting strength. The trend in air permeability of cross-laid web fabrics is found similar to spunlaced fabrics. The pore sizes of the thermal bonded fabrics have been minimized by laying the web in cross direction and increasing the binder fibre proportion; it has minimum variation with spunlaced fabrics. Aerosols of different particles are fed to the upstream of the filters with the face velocity of 16.6 cm/s which is then maintained as constant. The maximum filtration efficiency achieved is found to be 93.13% which is around 13% higher than that of the spunlaced fabric. For 80g/m2 fabrics with 0.3” particles, the filtration efficiency of spun laced fabric is only 38% which is around one and a half time lesser than 80 g/m2 of thermal bonded fabric; 90g/m2 fabrics show equal and better properties than 100g/m2 fabrics

    Biocompatible and bioactive PVA/Sericin/Chitosan nanofibrous wound dressing matrix

    No full text
    This work focuses on preparation of electrospun matrix for wound dressing application by utilizing sericin, chitosan and silver nanoparticles in PVA nanofibers. Sericin (SS) is extracted from silk cocoon (Bombyx Mori) by alkali degumming method. The extracted sericin is characterised by UV-visible Spectroscopy and FT-IR. Then, individual stock solutions of 2% (w/v) Chitosan (CH) in acetic acid, 10% (w/v) of PVA in deionised water were prepared. To enhance the antimicrobial property to the wound dressing, silver nanoparticles (Ag NP) was prepared using Cynodan dactylon (Bermuda grass) leaves extract and characterised using UV-visible Spectroscopy. The prepared Ag NP was incorporated in the nanofibers at constant proportion. Furthermore, three blended PVA/SS/CH solutions were prepared in the following ratios 8:1:1, 5:2.5:2.5, and 2:4:4 and electrospun to create nanofibrous dressing material. The structural and physical characteristics of the prepared nanofibrous dressing material were studied using SEM and Universal Testing Machine. Based upon mechanical strength and SEM analysis PVA/SS/CH in the ratio 8:1:1 was chosen for In-vitro studies. From the studies it concludes that the prepared PVA/SS/CH electrospun nanofiber will be a promising material for wound dressing

    Optimisation of multi-enzyme scouring process using Taguchi methods

    No full text
    164-171Scouring of cotton fabrics using combinations of pectinase, cellulase and protease in a single bath – two step has been carried out with optimum process parameters obtained from these enzymes individually. Absorbency and residual extractable impurity levels are found to be better for multi-enzyme scouring as compared to that for scouring using individual enzymes. Though higher weight losses are observed in the multi-enzyme scouring treatment, the strength loss of multi-enzyme scoured samples is not higher than that of samples obtained from individual enzyme scouring. Scaling and adjustment factors identified using Taguchi methods for the above response variables are further substantiated by confirmation tests

    Photodissociation of quinoline cation: Mapping the potential energy surface

    No full text
    International audienceA detailed exploration of the potential energy surface of quinoline cation (C9H7N·+) is carried out to extend the present understanding of its fragmentation mechanisms. Density functional theory calculations have been performed to explore new fragmentation schemes, giving special attention to previously unexplored pathways, such as isomerization and elimination of HNC. The isomerization mechanisms producing five- to seven-membered ring intermediates are described and are found to be a dominant channel both energetically and kinetically. Energetically competing pathways are established for the astrochemically important HNC-loss channel, which has hitherto never been considered in the context of the loss of a 27 amu fragment from the parent ions. Elimination of acetylene was also studied in great detail. Overall, the computational results are found to complement the experimental observations from the concurrently conducted PEPICO investigation. These could potentially open the doors for rich and interesting vacuum ultraviolet radiation-driven chemistry on planetary atmospheres, meteorites, and comets
    corecore