8 research outputs found

    Engineering cyclodextrin glycosyltransferase into a starch hydrolase with a high exo-specificity

    Get PDF
    Cyclodextrin glycosyltransferase (CGTase) enzymes from various bacteria catalyze the formation of cyclodextrins from starch. The Bacillus stearothermophilus maltogenic a-amylase (G2-amylase is structurally very similar to CGTases, but converts starch into maltose. Comparison of the three-dimensional structures revealed two large differences in the substrate binding clefts. (i) The loop forming acceptor subsite +3 had a different conformation, providing the G2-amylase with more space at acceptor subsite +3, and (ii) the G2-amylase contained a five-residue amino acid insertion that hampers substrate binding at the donor subsites -3/-4 (Biochemistry, 38 (1999) 8385). In an attempt to change CGTase into an enzyme with the reaction and product specificity of the G2-amylase, which is used in the bakery industry, these differences were introduced into Thermoanerobacterium thermosulfurigenes CGTase. The loop forming acceptor subsite +3 was exchanged, which strongly reduced the cyclization activity, however, the product specificity was hardly altered. The five-residue insertion at the donor subsites drastically decreased the cyclization activity of CGTase to the extent that hydrolysis had become the main activity of enzyme. Moreover, this mutant produces linear products of variable sizes with a preference for maltose and had a strongly increased exo-specificity. Thus, CGTase can be changed into a starch hydrolase with a high exo-specificity by hampering substrate binding at the remote donor substrate binding subsites. (C) 2003 Elsevier B.V. All rights reserved

    Handbook on Windows and Energy

    No full text

    Dihomo-γ-linolenic acid inhibits tumour necrosis factor-α production by human leucocytes independently of cyclooxygenase activity

    No full text
    Dietary oils (such as borage oil), which are rich in γ-linolenic acid (GLA), have been shown to be beneficial under inflammatory conditions. Dihomo-GLA (DGLA) is synthesized directly from GLA and forms a substrate for cyclooxygenase (COX) enzymes, resulting in the synthesis of lipid mediators (eicosanoids). In the present study, the immunomodulatory effects of DGLA were investigated and compared with those of other relevant fatty acids. Freshly isolated human peripheral blood mononuclear cells (PBMC) were cultured in fatty acid (100 µm)-enriched medium for 48 hr. Subsequently, cells were stimulated with lipopolysaccharide (LPS) for 20 hr and the cytokine levels were measured, in supernatants, by enzyme-linked immunosorbent assay (ELISA). Phospholipids were analysed by gas chromatography. Fatty acids were readily taken up, metabolized and incorporated into cellular phospholipids. Compared with the other fatty acids tested, DGLA exerted pronounced modulatory effects on cytokine production. Tumour necrosis factor-α (TNF-α) and interleukin (IL)-10 levels were reduced to 60% of control levels, whereas IL-6 levels were not affected by DGLA. Kinetic studies showed that peak levels of TNF-α, occurring early after LPS addition, were inhibited strongly, whereas IL-10 levels were not affected until 15 hr after stimulation. Both the reduction of cytokine levels and the decrease in arachidonic acid levels in these cells, induced by DGLA, were dose dependent, suggesting a shift in eicosanoid-subtype synthesis. However, although some DGLA-derived eicosanoids similarly reduced TNF-α levels, the effects of DGLA were probably not mediated by COX products, as the addition of indomethacin did not alter the effects of DGLA. In conclusion, these results suggest that DGLA affects cytokine production by human PBMC independently of COX activation
    corecore