17 research outputs found

    Light Microscopy Module Biophysics -1 (LMM-B1)

    Get PDF
    No abstract availabl

    Biophysics Research Support at NASA/MSFC

    Get PDF
    No abstract availabl

    Light Microscopy Module Biophysics -3 (LMM-B3)

    Get PDF
    No abstract availabl

    Oxygen Production from Lunar Regolith using Ionic Liquids

    Get PDF
    The objective of this work and future follow-on work is to develop a safe, efficient, and recyclable method for oxygen and/or metals extraction from lunar regolith, in support of establishing a manned lunar outpost. The approach is to solubilize the oxides that comprise lunar regolith in media consisting of ionic liquids (ILs) and/or their mixtures at temperatures at or below 300 C. Once in solution, electrolysis can either be performed in-situ to generate oxygen at the anode and hydrogen and/or metals (silicon, iron, aluminum, titanium, etc.) at the cathode. Alternatively, the water that is generated during the solubilization process can be distilled out and condensed into a separate IL and then electrolysized to produce hydrogen and oxygen. In the case of lunar regolith, this method could theoretically produce 44g oxygen per 100g of regolith. The oxygen can be used for human life support and/or as an oxidizer for rocket fuels, and the metals can be used as raw materials for construction and/or device fabrication. Moreover, the hydrogen produced can be used to re-generate the acidic medium, which can then be used to process additional regolith, thereby making the materials recyclable and limiting upmass requirements. An important advantage of IL acid systems is that they are much "greener" and safer than conventional materials used for regolith processing such as sulfuric or hydrochloric acids. They have very low vapor pressures, which means that they contain virtually no toxic and/or flammable volatile content, they are relatively non-corrosive, and they can exhibit good stability in harsh environments (extreme temperatures, hard vacuum, etc.). Furthermore, regolith processing can be achieved at lower temperatures than other processes such as molten oxide electrolysis or hydrogen reduction, thereby reducing initial power requirements. Six ILs have been synthesized and tested for their capability to dissolve lunar simulant, and for electrochemical and thermal stability. The results showed that ILs can be very efficient electrolytes; in particular IL/phosphoric-acid mixtures appear extremely promising for solubilizing lunar simulant. Results from preliminary experiments for distillation of water produced from the oxygen within the metal oxides of the simulant and the hydrogen from the acid indicates that over 75% of the oxygen from the simulant can be harvested as water at a temperature of 150 C. A method for collection of oxygen from electrolysis of the water derived from solubilizing simulant was developed by using a liquid nitrogen trap to liquefy and collect the oxygen. Although precise quantification of the liquid oxygen trapped is difficult to obtain, the amount of hydrogen and oxygen collected from electrolysis of water in this system was greater than 98%. This set-up also included a portable mass spectrometer for the identification of gases released from electrolysis cells. Regeneration of ILs through re-protonation was also demonstrated. Four sequential re-generations of an IL following solubilization of simulant showed no significant differences in amounts of simulant dissolved. Follow-on work for this project should include more studies of IL/phosphoric acid systems. Also, much more work is necessary for defining methods for electrolysis and purification of metals from regolith solubilized in ILs, and for developing a system to use the produced hydrogen to regenerate the spent IL. Finally, design and development of flight breadboard and prototype hardware is required

    Total Synthesis of Ionic Liquid Systems for Dissolution of Lunar Simulant

    Get PDF
    For purposes of Space Resource Utilization, work in the total synthesis of a new ionic liquid system for the extraction of oxygen and metals from lunar soil is studied and described. Reactions were carried out according to procedures found in the chemical literature, analyzed via Thin-Layer Chromatography and 1H Nuclear Magnetic Resonance Spectroscopy and purified via vacuum distillation and rotary evaporation. Upon final analysis via 1H NMR, it was found that while the intermediates of the synthesis had been achieved, unexpected side products were also present. The mechanisms and constraints of the synthesis are described as well as the final results of the project and recommendations for continued stud

    Oxygen Extraction from Regolith Using Ionic Liquids

    Get PDF
    An important concern with long-duration manned space travel is the need to furnish enough materials to the vehicle, as well as the crew, for the duration of the mission. By extracting oxygen from the oxides present in regolith, propellant and life support could be supplied to the vehicle and the crew while in space, thereby limiting the amount of supplies needed prior to lift-off. Using a class of compounds known as ionic liquids, we have been able to lower the electrolysis operating temperature from 1600 C (molten oxide electrolysis) to less than 200 C, making this process much more feasible in terms of energy consumption and materials handling. To make this process ready for deployment into space, we have investigated what steps of the process would be affected by the low-gravity environment in space. In the lab, the solubilization of lunar regolith simulant in ionic liquid produces water vapor that is normally distilled out of solution and subsequently electrolyzed for oxygen production. This distillation is not possible in space, so we have tested a method known as pervaporation and have suggested a way this technique could be incorporated into a reactor design

    Metals and Oxygen Mining from Meteorites, Asteroids and Planets using Reusable Ionic Liquids

    Get PDF
    In order for humans to explore beyond Low Earth Orbit both safely and economically, it will be essential to learn how to make use of in situ materials and energy in an environment much different than on earth. Precursor robotic missions will be necessary to determine what resources will be available and to demonstrate the capabilities for their use. To that end, we have recently been studying acidic Ionic Liquid (IL) systems for use in a low temperature (< 200 C) process to solubilize regolith, and to extract, as water, the oxygen available in metal oxides. Using this method, we have solubilized lunar regolith simulant (JSC-1A), as well as extraterrestrial materials in the form of meteorites, and have extracted up to 80% of the available oxygen. Moreover, by using a hydrogen gas electrode, we have shown that the IL can be regenerated at the anode and metals (e.g. iron) can be plated onto the cathode. These results indicate that IL processing is an excellent candidate for extracting oxygen in situ, for life support and propulsion, and for extracting metals to be used as feedstock in fabrication processes. We have obtained small amounts of meteorite materials believed by meteoriticists to have originated from our moon, Mars, and the asteroid Vesta, and were able to solubilize those using acidic IL systems. From the Vesta meteorite, we were able to extract about 60% of the available oxygen as water. As far as is known, this is the first time that extraterrestrial/earth hybrid water has been obtained. NMR analysis provided proof that the liquid retrieved is indeed water. We have also been able to electro-plate nickel and iron contained in meteorite material. By varying voltage they can be plated separately (electro-winning), and we plan to soon have sufficient quantities to form usable parts utilizing the additive manufacturing process

    Ionic Liquids Enabling Revolutionary Closed-Loop Life Support

    Get PDF
    Minimizing resupply from Earth is essential for future long duration manned missions. The current oxygen recovery system aboard the International Space Station is capable of recovering approximately 50% of the oxygen from metabolic carbon dioxide. For long duration manned missions, a minimum of 75% oxygen recovery is targeted with a goal of greater than 90%. Theoretically, the Bosch process can recover 100% of oxygen, making it a promising technology for oxygen recovery for long duration missions. However, the Bosch process produces elemental carbon which ultimately fouls the catalyst. Once the catalyst performance is compromised, it must be replaced resulting in undesired resupply mass. Based on the performance of a Bosch system designed by NASA in the 1990's, a three year Martian mission would require approximately 1315 kg (2850 lbs) of catalyst resupply. It may be possible to eliminate catalyst resupply with a fully regenerable system using an Ionic Liquid (IL)-based Bosch system. In 2016, we reported the feasibility of using ILs to produce an iron catalyst on a copper substrate and to regenerate the iron catalyst by extracting the iron from the copper substrate and product carbon. Additionally, we described a basic system concept for an IL-based Bosch. Here we report the results of efforts to scale catalyst preparation, catalyst regeneration, and to scale the carbon formation processing rate of a single reactor

    Utilizing Ionic Liquids to Enable the Future of Closed-Loop Life Support Technology

    Get PDF
    Current oxygen recovery technology onboard the International Space Station only recovers approximately 50% of the oxygen from metabolic carbon dioxide, thus requiring resupply mass in order to sustain life onboard. Future long duration manned missions will require maximum oxygen recovery in order to reduce resupply mass. Complete recovery of oxygen can be achieved through Bosch technology. The challenge with this technology is that the solid carbon produced during the process results in undesired catalyst resupply mass. Although there have been several approaches to solve this challenge, in order to totally eliminate the need for resupply only one potential process has been identified. This process is a fully-regenerable Ionic Liquid (IL)-based Bosch system that employs in situ resources. In 2016, efforts were made that proved the feasibility of an IL-based Bosch system. ILs were used to electroplate iron onto a copper substrate and to regenerate the iron by extracting the iron from the copper substrate and product carbon. In 2017, efforts were initiated to scale the proposed technology. Here we report the results of those efforts as well as an IL-based Bosch system concept and basic reactor design

    Mars Atmospheric In Situ Resource Utilization Projects at the Kennedy Space Center

    Get PDF
    The atmosphere of Mars, which is 96 percent carbon dioxide (CO2), is a rich resource for the human exploration of the red planet, primarily by the production of rocket propellants and oxygen for life support. Three recent projects led by NASAs Kennedy Space Center have been investigating the processing of CO2. The first project successfully demonstrated the Mars Atmospheric Processing Module (APM), which freezes CO2 with cryocoolers and combines sublimated CO2 with hydrogen to make methane and water. The second project absorbs CO2 with Ionic Liquids and electrolyzes it with water to make methane and oxygen, but with limited success so far. A third project plans to recover up to 100 of the oxygen in spacecraft respiratory CO2. A combination of the Reverse Water Gas Shift reaction and the Boudouard reaction eventually fill the reactor up with carbon, stopping the process. A system to continuously remove and collect carbon has been tested with encouraging results
    corecore