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• Mars Atmospheric Processing Module: Paul 
Hintze, Anne Meier, and Jon Bayliss (KSC)

• Ionic Liquids: Paul Hintze, Tracy Gibson,  Jan 
Surma (KSC),  Laurel Karr, Steve Paley (MSFC), 
and Matt Marone (Mercer University, GA)

• Self-Cleaning Boudouard Reactor for Full O2
Recovery: Paul Hintze, Anne Meier, Jon 
Bayliss, Tracy Gibson, James Captain, Griffin 
Lunn, Robert Devor, (KSC), Matt Mansell 
(MSFC), and Mark Berggren (Pioneer 
Astronautics)

Projects and Team Members
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• Atmosphere of Mars
– 95.9% CO2

– 2% Ar, 1.9% N2

– <1% pressure of Earth’s 
atmosphere (~7 mbar)

• Significant Amounts of Water in 
the Top 1-Meter of Regolith
– Water ice caps at the poles
– ~2% at least everywhere else
– ~10% even at equatorial regions
– Curiosity rover ground truth:

• 1.5-3% water in surface regolith 
(SAM)

• Average 2.9% water (DAN), up to 
7% in top 60 cm of regolith in 
some locations-seasonal variation

• Transient liquid water at night in 
the top 5 cm of regolith

Martian Resources
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• ISPP:  In Situ Propellant Production
– Demonstrate production of Mars Sample Return propellant
– Reduce risk for human Mars missions

• MARCO POLO - Mars Atmosphere and Regolith 
COllector/PrOcessor for Lander Operations 
– Started in 2011

• The Atmospheric Processing Module (APM)
– Mars CO2 Freezer Subsystem
– Sabatier (Methanation) Subsystem

• Collect, purify, and pressurize CO2

• Convert CO2 into methane (CH4) and water with H2

• Other modules mine regolith, extract water from regolith, purify 
the water, electrolyze it to H2 and O2, send the H2 to the Sabatier 
Subsystem, and liquefy/store the CH4 and O2

MARCO POLO Project
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Lander
Design Concept

Atmo Processing 
Module:
• CO2 capture from simulated Mars 
atmosphere (KSC)
• Sabatier converts H2 and CO2 into 
Methane and water (KSC)

Water Processing 
Module: (JSC)
• Currently can process 520g/hr of 
water (max 694 g/hr)

1 KW Fuel Cell and consumable 
storage (JSC & GRC)
• Using metal hydride for H2 storage due to available
• 1 KW No Flow Through FC (GRC)
• 10 KW main power FC not shown (JSC)

Liquefaction 
Module: (TBD)
• Common bulkhead tank for 
Methane and Oxygen liquid storage

Soil Processing 
Module:
• Soil Hopper handles 30 kg (KSC)
• Soil dryer uses CO2 sweep gas and 
500 deg C to extract water (JSC)

C&DH/PDU Module: (JSC)
• Central executive S/W
• Power distribution

Water Cleanup 
Module: (KSC)
• Cleans water prior to electrolysis
• Provides clean water storage 

RASSOR 2.0: (KSC)
• Excavator
•Provides feed to Soil Dryer

3m x 3m octagon lander deck
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• Collect and purify 88 g CO2/h (>99%)
– From simulated Martian atmosphere 
– 10 mbar; 95.4% CO2, 3% N2, 1.6% Ar

• Supply 88 g CO2/h at 50 psia to the Sabatier reactor
• Convert CO2 to 32 g CH4/h and 72 g H2O/h
• Operate autonomously for up to 14 h/day
• Minimize mass and power
• Fit within specified area and volume

– 9,000 cm2 pentagon
– 10,000 cm2 rectangle for easier lab operations
– 44 inches tall (112 cm, same as Water Processing

Module)

• Support MARCO POLO production goals of 0.032 kg CH4/h and 0.128 kg 
O2/day (50% of O2) for a total of 2.22 kg propellant/14 h day

• Sufficient for a Mars Sample Return Mission
• ~17% of full-scale O2 production goal for human Mars Missions (0.75 kg 

O2/h/module x 3 modules = 2.2 kg O2/h), i.e. 1/6th scale

APM Goals/Requirements

107 cm
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30.5 cm
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Cancellation of 

Field Demo



Atmospheric Processing 
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Atmospheric Processing 
Module
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Copper Heat 
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Recycle Pump

Membrane
Module

CO2 Freezers 
and Chiller

Avionics

Sabatier 
Reactor



Design of KSC 
Sabatier Reactor
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• 30 cm long stainless steel tube with an OD of 2.54 
cm and a wall thickness of 0.21 cm Twelve tests at 
various flow rates overheated 

• Single-pass conversion = 90% @ 88 g CO2/h + 3.5:1 
H2/CO2

• Based on Pioneer Astronautics design for steam 
oxidation of trash to methane

• 1.5 h integrated test with CO2 Freezers and recycling 
system showed 100% conversion to pure CH4

Preheat

Loop

Gas

Split

Gas Re-

Entry #1
Gas Re-

Entry #2

Catalyst Bed Inlet

Catalyst Bed Outlet

Gas Outlet

Gas 

Inlet

Catalyst Bed Mid-Point

Omitted from final design
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Long-Duration Tests Were 
Successful

Run No. 1 2 3

Sabatier Run Duration 7.0 h 7.0 h 7.0 h

Gas Composition CO2 CO2 Mars Gas

Average CO2 Freezing   

Rate

102 g/h 100 g/h 102 g/h

Average Fraction of CO2

Frozen

79% 76% 72%

Average Cryocooler Power 139 W 150 W 158 W

Average energy needed to 

Freeze CO2

4917 J/g 5051 J/g 5655 J/g

Average CO2 Supply Rate 

to Freezers

128 g/h 142 g/h 146 g CO2/h

Average CH4 Production 

Rate

32 g/h 32 g/h 32 g/h

Average CH4 Purity ~99.9% ~99.9% 96.0%*

Average H2O Produced 67 g/h 69 g/h 64 g/h

*Due to pressure losses during manual draining of Sabatier water condenser
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• CO2 Freezer Subsystem operates well
– Exceeds 88 g/h freezing and supply rate
– Freezes ~70% of incoming CO2

– Provides valuable data for power to freeze CO2 at Mars 
pressure
• Averages 0.22 W/g CO2 frozen = only 108% of theoretical

– Contributes to Human Mars Mission ISRU system designs, 
e.g. 680 W lift for 3.1 kg CO2/h

• Sabatier Subsystem also operates well
– New reactor is efficient
– Recycling system (membrane module + recycle pump) 

works well
– Pure CH4 obtained at expected rate
– ~7% of water is missing (<1% of loss is in CH4)

Conclusions from the 
Long-Duration Tests
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• Additional integrated tests performed
• Faster and slower production rates tested

– 1.0-1.6 SLPM feed to CO2 Freezers (87-71% frozen; 4800-5400 J/g)
– Sabatier works at 0.3 to 1.2 SLPM CO2 (0.75 SLPM nominal, 550°C max T)
– Some CO observed in CH4 after higher flow rates (now testing catalyst)

• Better LabVIEW automation implemented (sequences)
• Plan “virtual” integrated MARCO POLO tests with other systems at KSC 

and JSC in May and September – Hardware integration in FY17
• Testing is supporting Mars ISRU design studies
• Long Term Goal is to continue to refine ISRU technologies for potential 

robotic Mars missions using SpaceX “Red Dragon” (date TBD) and Mars 
Pathfinder in 2026/28

Recent Work and Current 
Status
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Introduction – Ionic Liquids
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• Ionic Liquids (ILs) are organic salts that have 
melting points near room temperature

• Certain ILs adsorb CO2 at low partial pressures 
and provide a medium for electrolysis to 
useful compounds

Typical Ionic Liquid Cations and Anions

Mars Propellant Production with Ionic Liquids



Potential Benefits for ISRU
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Current Mars Propellant Production 

Process Diagram

Mars Propellant Production Process Diagram 

with IL Electrolysis

• Advantages of IL capture/electrolysis:
─ No high temperature processing of CO2

─ One less pump and no cryocoolers
─ Four fewer major process steps
─ Estimated ~50% less mass and ~25% less power



CO2 Uptake at Low Partial Vacuum 
~50% Mole Fraction at ~10 mbar

17

“CO2 absorption capacity in (a) [emim][2-CNPyr], (b) [emim][4-Triaz], (c) [emim][3-Triaz], and (d) 
[emim][Tetz] at 22 °C. The CO2 solubility in [P66614]+ counterparts from ref 10 are also shown for 

comparison.” (Brennecke, 2014)
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Technical Approach

• Select best available candidate COTS ILs and 
electrocatalysts (KSC)
– Based on literature review

• Prepare new task-specific ILs (AZ 
Technology/MSFC)

• Determine CO2 capture efficiency and 
conductivity of ILs  (Mercer University and KSC)

• Measure electrochemical windows (KSC)

• Design/build electrochemical cells (KSC)

• Test electrolysis of CO2 + H2O to CH4 + O2



• COTS IL candidates: [EMIM][BF4], [BMIM][BF4], 
[BMIM][TFMSI], [BMIM][PF6] and [HMIM][B(CN)4]

• Electrocatalysts:  Copper cathode/Pt anode, TiO2
cathode/Pt anode

• Several ILs have good electrochemical windows and 
conductivity

• Two-compartment cell w/Nafion membrane
– Polycarbonate not suitable: CaCO3 precipitate,         Cu corrosion
– Switched to glass cell

• Three TSILs prepared:  AZ-1, AZ-2, and AZ-3 
(code named to protect IP)
– High CO2 sorption and conductivity

Results
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AZ-3 Shows High IL Conductivity 
with CO2 and CO2 + H2O
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Conductivity of AZ-1, AZ-2, AZ-3 and [P66614] [3-CF3Pyra] vs. time for CO2 uptake with and 

without 5% dissolved water
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AZ-3 Shows High CO2 Uptake
(No Water Added)
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Ionic Liquid CO2 Uptake at 
~25°C, wt%

CO2 Uptake at 60°C, 
mol%

Viscosity Increase

AZ-1 9.0 NA High (m.p. = 18°C)

AZ-2 9.6 9.1 High

AZ-3 15.6 NA High

[BMIM][PF6] 0.50 NA Low

[HMIM][BF4] 0.70 NA Low

[EMIM][BF4] 2.6 NA Low

[BMIM][BF4] 0.6 NA Low

[BMIM][TFMSI] 0.5 NA Low



Summary
(Underlined ILs = Candidates)
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Ionic Liquid CO2

Capacity, 
wt.% (R.T., 

1 atm, 
dry)

Electro-
chemical

Window, V

Conduc-
tivity with 

CO2

(mS/cm, 
40°C)

Compatible 
with Cu

Other Issues Tested 
Solubility
of Water, 

v/v%

Methane  
Production

Rate

[BMIM][TFSI] 0.46 2.1 No X

[BMIM][PF6] 0.50 2.4 Yes Precipitate,
Cu darkened

0

[BMIM][BF4] 0.55 1.8 Yes Small

[HMIM][B(CN)4] 0.70 0.6 No X

[EMIM][BF4] 2.6 1.6 No X

AZ-1 9.0 4.4 0.67 No 5 X

AZ-2 9.6 2.4 Yes IL darkened 0

AZ-3 15.6 1.2 Slow color 
change

Precipitate 5 Possible CH4

and CO (TiO2

only)



• Initiated by NASA RFP for “GAME CHANGING DEVELOPMENT 
PROGRAM, ADVANCED OXYGEN RECOVERY FOR SPACECRAFT LIFE 
SUPPORT SYSTEMS APPENDIX NH14ZOA001N-14GCD-C2”

• Only 50% of O2 can recovered from respiratory CO2 on the ISS
• Sabatier reactor makes CH4 and H2O
• CH4 is vented, losing H2

• H2O from cargo limits H2 availability to 50% recovery
• RFP seeks at least 75% recovery
• Deep space missions (Moon, Mars moons, Mars surface, asteroids, 

etc.) need closer to 100% recovery
• Joint KSC/FIT/ORBITEC/Pioneer Astronautics proposal was not 

selected, but received encouragement from STMD GCD
• KSC funded a FY14 CIF project
• Completed in July 2015
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Self-Cleaning Boudouard
Reactor for Full O2 Recovery 

from CO2



• Bosch Reaction:  CO2 + H2  C(s) + 2 H2O ( 2 H2 + O2)
• RWGS:  CO2 + H2  CO + H2O ( H2 + ½ O2)
• Boudouard: 2 CO  C(s) + CO2 (Fe catalyst, H2 enhancer)
• Need a method to remove C from catalyst as it forms
• Several concepts developed and one tested so far with 

encouraging results 24

Approach - Break Bosch Reaction 
into Two Parts (Demo’d by MSFC)



• Used CO/H2/N2 feed

• Tested steel wool 
reactor for 
comparison

• Tested 1” and 2” ID 
reactors

• Collected carbon in 
HEPA filter bag as it 
was generated

25

Self-Cleaning Boudouard 
Reactor
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Results Are Encouraging

Reactor

Carbon Collection Bag

To GC

CO input

N2 input

H2 input

Reactor Schematic
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REACTOR

REACTOR 

VOLUME, ML

76 300

CATALYST MASS, G 1.31 11.82

H2 FLOW, SCCM 232 909
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• 1” reactor ran for 12 h
– Reached 47% conversion, collected 27% of C in bag
– Found to be damaged upon disassembly

• 2” reactor run for 35 h
– Reached 40% conversion, collected 60% of C in bag
– Equivalent to ~45% of 1 crew CO2 O2/day
– Damage was similar to 1” reactor
– Evaluating improvements to reactor design

• Lasted much longer than steel wool reactors
• Fe, Ni, & Cr seen in carbon fines (corrosion of stainless steel wall)
• Will check ability to filter contaminants from air and water
• Relevance to Mars: carbon for filters, 3D printing, radiation shielding, 

dry lubricant (stable in vacuum), carbothermal reduction for metals 
production (Fe, Al, Si), diamonds?, terraforming?
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Boudouard Summary



• KSC is developing both low and higher TRL Mars 
ISRU technologies

• Significant progress made on Atmospheric 
Processing Module for methane/oxygen production

• Initial CO2/H2O electrolysis using Ionic Liquids 
shows more work is needed
– NASA Graduate Fellow at KSC this fall

• Very encouraging results so far for Self-Cleaning 
Boudouard reactor for both O2 recovery from CO2
and carbon production
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Conclusions
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Questions?

APM (KSC)

WPM (JSC)

RASSOR (KSC)

H2O(l)
H2O(l)

H2O(g)

O2(g)

H2(g)

[FY17 - CryoCart/Thruster (JSC)]

WCM (KSC)

SPM (JSC)

Soil

SoilCH4(g)

Hopper/Lander (KSC)

CO2/Ar/N2(g)

MARCO POLO Modules Scanning electron microscope 
image of carbon collected during 
the 1 inch diameter reactor test

Experimental setup for 
testing the Pine Research 

Instrumentation H-cell


