16 research outputs found

    Competence of graph convolutional network in anti-money laundering in Bitcoin Blockchain

    Get PDF
    Graph networks are extensively used as an essential framework to analyse the interconnections between transactions and capture illicit behaviour in Bitcoin blockchain. Due to the complexity of Bitcoin transaction graph, the prediction of illicit transactions has become a challenging problem to unveil illicit services over the network. Graph Convolutional Network, a graph neural network based spectral approach, has recently emerged and gained much attention regarding graph-structured data. Previous research has highlighted the degraded performance of the latter approach to predict illicit transactions using, a Bitcoin transaction graph, so-called Elliptic data derived from Bitcoin blockchain. Motivated by the previous work, we seek to explore graph convolutions in a novel way. For this purpose, we present a novel approach that is modelled using the existing Graph Convolutional Network intertwined with linear layers. Concisely, we concatenate node embeddings obtained from graph convolutional layers with a single hidden layer derived from the linear transformation of the node feature matrix and followed by Multi-layer Perceptron. Our approach is evaluated using Elliptic data, wherein efficient accuracy is yielded. The proposed approach outperforms the original work of same data set

    Cyberspace, Blockchain, Governance:How Technology Implies Normative Power and Regulation

    Get PDF
    Technologies and their inherent design choices create normative structures that affect governance. This chapter aims to illustrate how blockchain technology in particular introduces new norms into a legal framework. We first analyze the different forms of governance by distinguishing between old and new governance. With a view to code that functions as legal norms, Blockchain technology is particularly suited to create governance structures and mechanisms. However, one needs to be aware of the norms that are implicitly introduced into the legal system by a specific blockchain technology. We look at the blockchain technology that underlies cryptocurrencies such as Bitcoin. This blockchain introduces a decentralized, transparent, cryptographically locked and thus immutable shared ledger. In summary, these design choices have normative powers over the user and over user interaction. If this is indeed the case, then regulators have to actively assess newly introduced digital ledger technology and other technologies for their effect on the normative and legal system.</p

    Digital Art as ‘Monetised Graphics:’ Enforcing Intellectual Property on the Blockchain

    Get PDF
    In a global economic landscape of hyper-commodification and financialisation, efforts to assimilate digital art into the high-stakes commercial art market have so far been rather unsuccessful, presumably because digital art works cannot easily assume the status of precious object worthy of collection. This essay explores the use of blockchain technologies in attempts to create proprietary digital art markets in which uncommodifiable digital art works are financialised as artificially scarce commodities. Using the decentralisation techniques and distributed database protocols underlying current cryptocurrency technologies, such efforts, exemplified here by the platform Monegraph, tend to be presented as concerns with the interest of digital artists and with shifting ontologies of the contemporary work of art. I challenge this characterisation, and argue, in a discussion that combines aesthetic theory, legal and philosophical theories of intellectual property, rhetorical analysis, and research in the political economy of new media, that the formation of proprietary digital art markets by emerging commercial platforms such as Monegraph constitutes a worrisome amplification of long-established, on-going efforts to fence in creative expression as private property. As I argue, the combination of blockchain-based protocols with established ambitions of intellectual property policy yields hybrid conceptual-computational financial technologies (such as self-enforcing smart contracts attached to digital artefacts) that are unlikely to empower artists, but which serve to financialise digital creative practices as a whole, curtailing the critical potential of the digital as an inherently dynamic and potentially uncommodifiable mode of production and artistic expression

    Making Sense of Blockchain Applications:A Typology for HCI

    Get PDF
    Blockchain is an emerging infrastructural technology that is proposed to fundamentally transform the ways in which people transact, trust, collaborate, organize and identify themselves. In this paper, we construct a typology of emerging blockchain applications, consider the domains in which they are applied, and identify distinguishing features of this new technology. We argue that there is a unique role for the HCI community in linking the design and application of blockchain technology towards lived experience and the articulation of human values. In particular, we note how the accounting of transactions, a trust in immutable code and algorithms, and the leveraging of distributed crowds and publics around vast interoperable databases all relate to longstanding issues of importance for the field. We conclude by highlighting core conceptual and methodological challenges for HCI researchers beginning to work with blockchain and distributed ledger technologies

    Towards Smart Meter Energy Analysis and Profiling to Support Low Carbon Emissions

    No full text
    Efforts of electrical utilities to respond to climate change require the development of increasingly sophisticated, integrated electrical grids referred to as the “smart grids”. Much of the smart grid effort focuses on integration of renewable generation into the electricity grid and on increased monitoring and automation of electrical transmission functions. However, a key component of smart grid development is the introduction of the smart electrical meter for all residential electrical customers. Smart meter (SM) deployment is the corner stone of the smart grid. In addition to adding new functionality to support system reliability, SMs provide the technological means for utilities to institute new programs to allow their customers to better manage and reduce their electricity use and to support increased renewable generation to reduce greenhouse emissions from electricity use. As such, this paper presents our research towards the study of a smart home environment and how the data produced is used to profile energy usage in homes. The validity of the data is justified through analysis of the profiles generated while consumers use energy during off peak and peak periods. By learning, understanding and feeding patterns of home behaviour, it is possible to educate the consumer regarding their energy usage, helping them to reduce costs but also the emissions from their home
    corecore