2,241 research outputs found

    Shelter competition between native signal crayfish and non-native red swamp crayfish in Pine Lake, Sammamish, Washington: the role of size and sex

    Get PDF
    Freshwater crayfish (Decapoda) communities worldwide are becoming increasingly similar from location to location by the intentional or accidental introduction of North American crayfishes. The red swamp crayfish (Procambarus clarkii, Cambaridae), which is native to the south-central United States and northeastern Mexico, is the most widely introduced crayfish in the world. It was first discovered in Pine Lake, Sammamish, Washington in 2000. The results of a 2005 baseline survey of the crayfish in Pine Lake suggested that the red swamp crayfish was displacing the native signal crayfish (Pacifastacus leniusculus, Astacidae). One mechanism through which non-native crayfishes displace native species is competitive interaction over shelter that influences susceptibility to predation. Field experiments were designed to explore how crayfish size and sex influence shelter occupancy in mixed-species pairs of signal crayfish and red swamp crayfish competing for limited shelter inside enclosures placed on the bottom of Pine Lake. In addition, the relative survivorship of signal crayfish and red swamp crayfish was quantified in experiments where mixed-species pairs were tethered outside of single shelters. Irrespective of species and sex, when paired with smaller heterospecifics, large crayfish readily monopolized the shelters inside the enclosures. When contestants were size-matched, the dominant crayfish or \u27winner\u27 was typically the one with longer chelae; frequently, this was the signal crayfish. Female crayfishes also were adept at monopolizing the shelter. The tether experiments revealed no significant differences in survivorship between species. These results suggest that additional mechanisms besides shelter competition are contributing to the possible displacement of signal crayfish at Pine Lake

    Intrinsic response time of graphene photodetectors

    Get PDF
    Graphene-based photodetectors are promising new devices for high-speed optoelectronic applications. However, despite recent efforts, it is not clear what determines the ultimate speed limit of these devices. Here, we present measurements of the intrinsic response time of metal-graphene-metal photodetectors with monolayer graphene using an optical correlation technique with ultrashort laser pulses. We obtain a response time of 2.1 ps that is mainly given by the short lifetime of the photogenerated carriers. This time translates into a bandwidth of ~262 GHz. Moreover, we investigate the dependence of the response time on gate voltage and illumination laser power

    Does urethral competence affect urodynamic voiding parameters in women with prolapse?

    Full text link
    Aims To (1) compare voiding parameters and (2) correlate symptoms and urodynamic findings in women with pelvic organ prolapse (POP) and varying degrees of urethral competence. Methods We compared three groups of women with stages II–IV POP. Groups 1 and 2 were symptomatically stress continent women participating in the Colpopexy and Urinary Reduction Efforts (CARE) trial; during prolapse reduction before sacrocolpopexy, Group 1 (n = 67) did not have and Group 2 (n = 84) had urodynamic stress incontinence (USI) during prolapse reduction. Group 3 participants (n = 74), recruited specifically for this study, had stress urinary incontinence (SUI) symptoms and planned sacrocolpopexy. Participants completed standardized uroflowmetry, pressure voiding studies, and validated symptom questionnaires. Results Subjects' median age was 61 years, median parity 3 and 87% had stage III or IV POP. Fourteen percent of women in Group 3 demonstrated USI without, and 70% with, prolapse reduction. Women in Groups 2 and 3 had more detrusor overactivity (DO) than Group 1 (17 and 24% vs. 6%, P  = 0.02) and detrusor overactivity incontinence (DOI) (15 and 8% vs. 0%, P  = 0.004). Based on the Blaivis–Groutz nomogram, 60% of all women were obstructed. Post-void residual volume (PVR), peak flow rate, detrusor pressure at peak flow, voiding mechanisms, voiding patterns, obstruction and urinary retention did not differ among groups. Women in Group 3 had higher irritative and obstructive symptom scores than Group 1 or 2; neither score differed by presence of DO nor obstruction, respectively. Conclusion Women with POP have significant rates of urodynamic obstruction and retention, independent of their continence status. Symptoms of obstruction and retention correlate poorly with urodynamic findings. Neurourol. Urodynam. 26:1030–1035, 2007. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57365/1/20436_ftp.pd

    Plasmodium vivax and Plasmodium falciparum infection dynamics: re-infections, recrudescences and relapses

    Get PDF
    Background: In malaria endemic populations, complex patterns of Plasmodium vivax and Plasmodium falciparum blood-stage infection dynamics may be observed. Genotyping samples from longitudinal cohort studies for merozoite surface protein (msp) variants increases the information available in the data, allowing multiple infecting parasite clones in a single individual to be identified. msp genotyped samples from two longitudinal cohorts in Papua New Guinea (PNG) and Thailand were analysed using a statistical model where the times of acquisition and clearance of each clone in every individual were estimated using a process of data augmentation. Results: For the populations analysed, the duration of blood-stage P. falciparum infection was estimated as 36 (95% Credible Interval (CrI): 29, 44) days in PNG, and 135 (95% CrI 94, 191) days in Thailand. Experiments on simulated data indicated that it was not possible to accurately estimate the duration of blood-stage P. vivax infections due to the lack of identifiability between a single blood-stage infection and multiple, sequential blood-stage infections caused by relapses. Despite this limitation, the method and data point towards short duration of blood-stage P. vivax infection with a lower bound of 24 days in PNG, and 29 days in Thailand. On an individual level, P. vivax recurrences cannot be definitively classified into re-infections, recrudescences or relapses, but a probabilistic relapse phenotype can be assigned to each P. vivax sample, allowing investigation of the association between epidemiological covariates and the incidence of relapses. Conclusion: The statistical model developed here provides a useful new tool for in-depth analysis of malaria data from longitudinal cohort studies, and future application to data sets with multi-locus genotyping will allow more detailed investigation of infection dynamics

    The epidemiology of Plasmodium falciparum and Plasmodium vivax in East Sepik Province, Papua New Guinea, pre- and post-implementation of national malaria control efforts

    Get PDF
    Background In the past decade, national malaria control efforts in Papua New Guinea (PNG) have received renewed support, facilitating nationwide distribution of free long-lasting insecticidal nets (LLINs), as well as improvements in access to parasite-confirmed diagnosis and effective artemisinin-combination therapy in 2011–2012. Methods To study the effects of these intensified control efforts on the epidemiology and transmission of Plasmodium falciparum and Plasmodium vivax infections and investigate risk factors at the individual and household level, two cross-sectional surveys were conducted in the East Sepik Province of PNG; one in 2005, before the scale-up of national campaigns and one in late 2012-early 2013, after 2 rounds of LLIN distribution (2008 and 2011–2012). Differences between studies were investigated using Chi square (χ2), Fischer’s exact tests and Student’s t-test. Multivariable logistic regression models were built to investigate factors associated with infection at the individual and household level. Results The prevalence of P. falciparum and P. vivax in surveyed communities decreased from 55% (2005) to 9% (2013) and 36% to 6%, respectively. The mean multiplicity of infection (MOI) decreased from 1.8 to 1.6 for P. falciparum (p = 0.08) and from 2.2 to 1.4 for P. vivax (p  50% of household members with Plasmodium infection). Conclusion After the scale-up of malaria control interventions in PNG between 2008 and 2012, there was a substantial reduction in P. falciparum and P. vivax infection rates in the studies villages in East Sepik Province. Understanding the extent of local heterogeneity in malaria transmission and the driving factors is critical to identify and implement targeted control strategies to ensure the ongoing success of malaria control in PNG and inform the development of tools required to achieve elimination. In household-based interventions, diagnostics with a sensitivity similar to (expert) microscopy could be used to identify and target high rate households

    Increasingly inbred and fragmented populations of Plasmodium vivax associated with the eastward decline in malaria transmission across the Southwest Pacific

    Get PDF
    The human malaria parasite Plasmodium vivax is more resistant to malaria control strategies than Plasmodium falciparum, and maintains high genetic diversity even when transmission is low. To investigate whether declining P. vivax transmission leads to increasing population structure that would facilitate elimination, we genotyped samples from across the Southwest Pacific region, which experiences an eastward decline in malaria transmission, as well as samples from two time points at one site (Tetere, Solomon Islands) during intensified malaria control. Analysis of 887 P. vivax microsatellite haplotypes from hyperendemic Papua New Guinea (PNG, n = 443), meso-hyperendemic Solomon Islands (n = 420), and hypoendemic Vanuatu (n = 24) revealed increasing population structure and multilocus linkage disequilibrium yet a modest decline in diversity as transmission decreases over space and time. In Solomon Islands, which has had sustained control efforts for 20 years, and Vanuatu, which has experienced sustained low transmission for many years, significant population structure was observed at different spatial scales. We conclude that control efforts will eventually impact P. vivax population structure and with sustained pressure, populations may eventually fragment into a limited number of clustered foci that could be targeted for elimination

    Comparison of three methods for detection of gametocytes in Melanesian children treated for uncomplicated malaria

    Get PDF
    Background: Gametocytes are the transmission stages of Plasmodium parasites, the causative agents of malaria. As their density in the human host is typically low, they are often undetected by conventional light microscopy. Furthermore, application of RNA-based molecular detection methods for gametocyte detection remains challenging in remote field settings. In the present study, a detailed comparison of three methods, namely light microscopy, magnetic fractionation and reverse transcriptase polymerase chain reaction for detection of Plasmodium falciparum and Plasmodium vivax gametocytes was conducted.Methods. Peripheral blood samples from 70 children aged 0.5 to five years with uncomplicated malaria who were treated with either artemether-lumefantrine or artemisinin-naphthoquine were collected from two health facilities on the north coast of Papua New Guinea. The samples were taken prior to treatment (day 0) and at pre-specified intervals during follow-up. Gametocytes were measured in each sample by three methods: i) light microscopy (LM), ii) quantitative magnetic fractionation (MF) and, iii) reverse transcriptase PCR (RTPCR). Data were analysed using censored linear regression and Bland and Altman techniques.Results: MF and RTPCR were similarly sensitive and specific, and both were superior to LM. Overall, there were approximately 20% gametocyte-positive samples by LM, whereas gametocyte positivity by MF and RTPCR were both more than two-fold this level. In the subset of samples collected prior to treatment, 29% of children were positive by LM, and 85% were gametocyte positive by MF and RTPCR, respectively.Conclusions: The present study represents the first direct comparison of standard LM, MF and RTPCR for gametocyte detection in field isolates. It provides strong evidence that MF is superior to LM and can be used to detect gametocytaemic patients under field conditions with similar sensitivity and specificity as RTPCR

    Investigating differences in village-level heterogeneity of malaria infection and household risk factors in Papua New Guinea

    Get PDF
    Malaria risk is highly heterogeneous. Understanding village and household-level spatial heterogeneity of malaria risk can support a transition to spatially targeted interventions for malaria elimination. This analysis uses data from cross-sectional prevalence surveys conducted in 2014 and 2016 in two villages (Megiar and Mirap) in Papua New Guinea. Generalised additive modelling was used to characterise spatial heterogeneity of malaria risk and investigate the contribution of individual, household and environmental-level risk factors. Following a period of declining malaria prevalence, the prevalence of P. falciparum increased from 11.4 to 19.1% in Megiar and 12.3 to 28.3% in Mirap between 2014 and 2016, with focal hotspots observed in these villages in 2014 and expanding in 2016. Prevalence of P. vivax was similar in both years (20.6% and 18.3% in Megiar, 22.1% and 23.4% in Mirap) and spatial risk heterogeneity was less apparent compared to P. falciparum. Within-village hotspots varied by Plasmodium species across time and between villages. In Megiar, the adjusted odds ratio (AOR) of infection could be partially explained by household factors that increase risk of vector exposure, such as collecting outdoor surface water as a main source of water. In Mirap, increased AOR overlapped with proximity to densely vegetated areas of the village. The identification of household and environmental factors associated with increased spatial risk may serve as useful indicators of transmission hotspots and inform the development of tailored approaches for malaria control

    Motion and twisting of magnetic particles ingested by alveolar macrophages in the human lung: effect of smoking and disease

    Get PDF
    BACKGROUND: Magnetic microparticles being ingested by alveolar macrophages can be used as a monitor for intracellular phagosome motions and cytoskeletal mechanical properties. These studies can be performed in the human lung after voluntary inhalation. The influence of cigarette smoking and lung diseases on cytoskeleton dependent functions was studied. METHODS: Spherical 1.3 μm diameter ferrimagnetic iron oxide particles were inhaled by 17 healthy volunteers (40 – 65 years), 15 patients with sarcoidosis (SAR), 12 patients with idiopathic pulmonary fibrosis (IPF), and 18 patients with chronic obstructive bronchitis (COB). The retained particles were magnetized and aligned in an external 100 mT magnetic field. All magnetized particles induce a weak magnetic field of the lung, which was detected by a sensitive SQUID (superconducting quantum interference device) sensor. Cytoskeletal reorganizations within macrophages and intracellular transport cause stochastic magnetic dipole rotations, which are reflected in a decay of the magnetic lung field, called relaxation. Directed phagosome motion was induced in a weak magnetic twisting field. The resistance of the cytoplasm to particle twisting was characterized by the viscosity and the stiffness (ratio between stress to strain) of the cytoskeleton. RESULTS: One week after particle inhalation and later macrophage motility (relaxation) and cytoskeletal stiffness was not influenced by cigarette smoking, neither in healthy subjects, nor in the patients. Patients with IPF showed in tendency a faster relaxation (p = 0.06). Particle twisting revealed a non-Newtonian viscosity with a pure viscous and a viscoelastic compartment. The viscous shear was dominant, and only 27% of the shear recoiled and reflected viscoelastic properties. In patients with IPF, the stiffness was reduced by 60% (p < 0.02). An analysis of the shear rate and stress dependence of particle twisting allows correlating the rheological compartments to cytoskeletal subunits, in which microtubules mediate the pure viscous (non-recoverable) shear and microfilaments mediate the viscoelastic (recoverable) behavior. The missing correlation between relaxation and particle twisting shows that both stochastic and directed phagosome motion reflect different cytoskeletal mechanisms. CONCLUSION: Faster relaxation and a soft cytoskeleton in patients with IPF indicate alterations in cytoskeleton dependent functions of alveolar macrophages, which may cause dysfunction's in the alveolar defense, like a slower migration, a retarded phagocytosis, a disturbed phagosome lysosome fusion and an impaired clearance

    Differential impact of malaria control interventions on P. falciparum and P. vivax infections in young Papua New Guinean children

    Get PDF
    INTRODUCTION: As malaria transmission declines, understanding the differential impact of intensified control on Plasmodium falciparum relative to Plasmodium vivax and identifying key drivers of ongoing transmission is essential to guide future interventions. METHODS: Three longitudinal child cohorts were conducted in Papua New Guinea before (2006/2007), during (2008) and after scale-up of control interventions (2013). In each cohort, children aged 1-5 years were actively monitored for infection and illness. Incidence of malaria episodes, molecular force of blood-stage infections (molFOB) and population-averaged prevalence of infections were compared across the cohorts to investigate the impact of intensified control in young children and the key risk factors for malaria infection and illness in 2013. RESULTS: Between 2006 and 2008, P. falciparum infection prevalence, molFOB, and clinical malaria episodes reduced by 47%, 59% and 69%, respectively, and a further 49%, 29% and 75% from 2008 to 2013 (prevalence 41.6% to 22.1% to 11.2%; molFOB: 3.4 to 1.4 to 1.0 clones/child/year; clinical episodes incidence rate (IR) 2.6 to 0.8 to IR 0.2 episodes/child/year). P. vivax clinical episodes declined at rates comparable to P. falciparum between 2006, 2008 and 2013 (IR 2.5 to 1.1 to 0.2), while P. vivax molFOB (2006, 9.8; 2008, 12.1) and prevalence (2006, 59.6%; 2008, 65.0%) remained high in 2008. However, in 2013, P. vivax molFOB (1.2) and prevalence (19.7%) had also substantially declined. In 2013, 89% of P. falciparum and 93% of P. vivax infections were asymptomatic, 62% and 47%, respectively, were sub-microscopic. Area of residence was the major determinant of malaria infection and illness. CONCLUSION: Intensified vector control and routine case management had a differential impact on rates of P. falciparum and P. vivax infections but not clinical malaria episodes in young children. This suggests comparable reductions in new mosquito-derived infections but a delayed impact on P. vivax relapsing infections due to a previously acquired reservoir of hypnozoites. This demonstrates the need to strengthen implementation of P. vivax radical cure to maximise impact of control in co-endemic areas. The high heterogeneity of malaria in 2013 highlights the importance of surveillance and targeted interventions to accelerate towards elimination
    corecore