66 research outputs found

    Production and Processing of siRNA Precursor Transcripts from the Highly Repetitive Maize Genome

    Get PDF
    Mutations affecting the maintenance of heritable epigenetic states in maize identify multiple RNA–directed DNA methylation (RdDM) factors including RMR1, a novel member of a plant-specific clade of Snf2-related proteins. Here we show that RMR1 is necessary for the accumulation of a majority of 24 nt small RNAs, including those derived from Long-Terminal Repeat (LTR) retrotransposons, the most common repetitive feature in the maize genome. A genetic analysis of DNA transposon repression indicates that RMR1 acts upstream of the RNA–dependent RNA polymerase, RDR2 (MOP1). Surprisingly, we show that non-polyadenylated transcripts from a sampling of LTR retrotransposons are lost in both rmr1 and rdr2 mutants. In contrast, plants deficient for RNA Polymerase IV (Pol IV) function show an increase in polyadenylated LTR RNA transcripts. These findings support a model in which Pol IV functions independently of the small RNA accumulation facilitated by RMR1 and RDR2 and support that a loss of Pol IV leads to RNA Polymerase II–based transcription. Additionally, the lack of changes in general genome homeostasis in rmr1 mutants, despite the global loss of 24 nt small RNAs, challenges the perceived roles of siRNAs in maintaining functional heterochromatin in the genomes of outcrossing grass species

    Diversity of Pol IV Function Is Defined by Mutations at the Maize rmr7 Locus

    Get PDF
    Mutations affecting the heritable maintenance of epigenetic states in maize identify multiple small RNA biogenesis factors including NRPD1, the largest subunit of the presumed maize Pol IV holoenzyme. Here we show that mutations defining the required to maintain repression7 locus identify a second RNA polymerase subunit related to Arabidopsis NRPD2a, the sole second largest subunit shared between Arabidopsis Pol IV and Pol V. A phylogenetic analysis shows that, in contrast to representative eudicots, grasses have retained duplicate loci capable of producing functional NRPD2-like proteins, which is indicative of increased RNA polymerase diversity in grasses relative to eudicots. Together with comparisons of rmr7 mutant plant phenotypes and their effects on the maintenance of epigenetic states with parallel analyses of NRPD1 defects, our results imply that maize utilizes multiple functional NRPD2-like proteins. Despite the observation that RMR7/NRPD2, like NRPD1, is required for the accumulation of most siRNAs, our data indicate that different Pol IV isoforms play distinct roles in the maintenance of meiotically-heritable epigenetic information in the grasses

    Ectopic T Cell Receptor-α Locus Control Region Activity in B Cells Is Suppressed by Direct Linkage to Two Flanking Genes at Once

    Get PDF
    The molecular mechanisms regulating the activity of the TCRα gene are required for the production of the circulating T cell repertoire. Elements of the mouse TCRα locus control region (LCR) play a role in these processes. We previously reported that TCRα LCR DNA supports a gene expression pattern that mimics proper thymus-stage, TCRα gene-like developmental regulation. It also produces transcription of linked reporter genes in peripheral T cells. However, TCRα LCR-driven transgenes display ectopic transcription in B cells in multiple reporter gene systems. The reasons for this important deviation from the normal TCRα gene regulation pattern are unclear. In its natural locus, two genes flank the TCRα LCR, TCRα (upstream) and Dad1 (downstream). We investigated the significance of this gene arrangement to TCRα LCR activity by examining transgenic mice bearing a construct where the LCR was flanked by two separate reporter genes. Surprisingly, the presence of a second, distinct, reporter gene downstream of the LCR virtually eliminated the ectopic B cell expression of the upstream reporter observed in earlier studies. Downstream reporter gene activity was unaffected by the presence of a second gene upstream of the LCR. Our findings indicate that a gene arrangement in which the TCRα LCR is flanked by two distinct transcription units helps to restrict its activity, selectively, on its 5′-flanking gene, the natural TCRα gene position with respect to the LCR. Consistent with these findings, a TCRα/Dad1 locus bacterial artificial chromosome dual-reporter construct did not display the ectopic upstream (TCRα) reporter expression in B cells previously reported for single TCRα transgenes

    The design, construction, and commissioning of the KATRIN experiment

    Get PDF
    The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [1] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [2]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns

    Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN

    Get PDF
    We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (1.01.1+0.9)eV2(−1.0^{+0.9}_{−1.1}) eV^2. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation

    Maize RNA Polymerase IV Defines trans

    No full text

    The genomic locus of the TCRα LCR and transgene constructs.

    No full text
    <p>(<b>A</b>) Scale diagram of the TCRα/Dad1 genomic locus containing the TCRα LCR. (<b>B</b>) Diagrams (not drawn to scale) of the three heterologous TCRα LCR reporter transgenes used in these studies. Note that the hCD2 transgene is in the position of the TCRα gene with respect to the LCR sequences. In contrast, the HLA-B7 reporter gene is in the position of the Dad1 gene. Vertical arrows and numbers indicate the nine identified DNase I hypersensitive sites (HS) of the LCR. Horizontal arrows indicate the transcription orientation of the genes depicted. Solid boxes indicate exons. The asterisk denotes the placement of a premature stop codon.</p
    corecore