132 research outputs found

    Recessive mutation in tetraspanin CD151 causes Kindler syndrome-like epidermolysis bullosa with multi-systemic manifestations including nephropathy

    Get PDF
    Epidermolysis bullosa (EB) is caused by mutations in as many as 19 distinct genes. We have developed a next-generation sequencing (NGS) panel targeting genes known to be mutated in skin fragility disorders, including tetraspanin CD151 expressed in keratinocytes at the dermal-epidermal junction. The NGS panel was applied to a cohort of 92 consanguineous families of unknown subtype of EB. In one family, a homozygous donor splice site mutation in CD151 (NM_139029; c.351 + 2T > C) at the exon 5/intron 5 border was identified, and RT-PCR and whole transcriptome analysis by RNA-seq confirmed deletion of the entire exon 5 encoding 25 amino acids. Immunofluorescence of proband's skin and Western blot of skin proteins with a monoclonal antibody revealed complete absence of CD151. Transmission electron microscopy showed intracellular disruption and cell-cell dysadhesion of keratinocytes in the lower epidermis. Clinical examination of the 33-year old proband, initially diagnosed as Kindler syndrome, revealed widespread blistering, particularly on pretibial areas, poikiloderma, nail dystrophy, loss of teeth, early onset alopecia, and esophageal webbing and strictures. The patient also had history of nephropathy with proteinuria. Collectively, the results suggest that biallelic loss-of-function mutations in CD151 underlie an autosomal recessive mechano-bullous disease with systemic features. Thus, CD151 should be considered as the 20th causative, EB-associated gene

    Optimizing linear alkyl benzene sulfonate removal using fenton oxidation process in taguchi method

    No full text
    Linear alkyl benzene sulfonate (LAS), which is the most common used anionic surfactant in detergents manufacturing, can discharge onto water resources through wastewater and causes change in taste and odor, disruption in water treatment processes, aquatics death, and oxygen transfer limitation. Accordingly, this article investigates to optimize LAS removal using Fenton oxidation process in Taguchi Method for the first time. LAS removal using Fenton oxidation was perused experimentally in a lab-scale reactor

    Acro-cardio-facial syndrome

    Get PDF
    Acro-cardio-facial syndrome (ACFS) is a rare genetic disorder characterized by split-hand/split-foot malformation (SHFM), facial anomalies, cleft lip/palate, congenital heart defect (CHD), genital anomalies, and mental retardation. Up to now, 9 patients have been described, and most of the reported cases were not surviving the first days or months of age. The spectrum of defects occurring in ACFS is wide, and both interindividual variability and clinical differences among sibs have been reported. The diagnosis is based on clinical criteria, since the genetic mechanism underlying ACFS is still unknown. The differential diagnosis includes other disorders with ectrodactyly, and clefting conditions associated with genital anomalies and heart defects. An autosomal recessive pattern of inheritance has been suggested, based on parental consanguinity and disease's recurrence in sibs in some families. The more appropriate recurrence risk of transmitting the disease for the parents of an affected child seems to be up to one in four. Management of affected patients includes treatment of cardiac, respiratory, and feeding problems by neonatal pediatricians and other specialists. Prognosis of ACFS is poor

    Investigation of chromosomal abnormalities and microdeletion/ microduplication(s) in fifty Iranian patients with multiple congenital anomalies

    Get PDF
    Objective: Major birth defects are inborn structural or functional anomalies with long-term disability and adverse impacts on individuals, families, health-care systems, and societies. Approximately 20 of birth defects are due to chromosomal and genetic conditions. Inspired by the fact that neonatal deaths are caused by birth defects in about 20 and 10 of cases in Iran and worldwide respectively, we conducted the present study to unravel the role of chromosome abnormalities, including microdeletion/microduplication(s), in multiple congenital abnormalities in a number of Iranian patients. Materials and Methods: In this descriptive cross-sectional study, 50 sporadic patients with Multiple Congenital Anomalies (MCA) were selected. The techniques employed included conventional karyotyping, fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA), and array comparative genomic hybridisation (array-CGH), according to the clinical diagnosis for each patient. Results: Chromosomal abnormalities and microdeletion/microduplication(s) were observed in eight out of fifty patients (16). The abnormalities proved to result from the imbalances in chromosomes 1, 3, 12, and 18 in four of the patients. However, the other four patients were diagnosed to suffer from the known microdeletions of 22q11.21, 16p13.3, 5q35.3, and 7q11.23. Conclusion: In the present study, we report a patient with 46,XY, der(18)12/46,XY, der(18), +mar8 dn presented with MCA associated with hypogammaglobulinemia. Given the patient�s seemingly rare and highly complex chromosomal abnormality and the lack of any concise mechanism presented in the literature to justify the case, we hereby propose a novel mechanism for the formation of both derivative and ring chromosome 18. In addition, we introduce a new 12q abnormality and a novel association of an Xp22.33 duplication with 1q43q44 deletion syndrome. The phenotype analysis of the patients with chromosome abnormality would be beneficial for further phenotype-genotype correlation studies. © 2019 Royan Institute (ACECR). All rights reserved

    The genetic basis of DOORS syndrome: an exome-sequencing study.

    Get PDF
    Deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures (DOORS) syndrome is a rare autosomal recessive disorder of unknown cause. We aimed to identify the genetic basis of this syndrome by sequencing most coding exons in affected individuals

    Next Generation Molecular Diagnosis of Hereditary Spastic Paraplegias: An Italian Cross-Sectional Study

    Get PDF
    Hereditary spastic paraplegia (HSP) refers to a group of genetically heterogeneous neurodegenerative motor neuron disorders characterized by progressive age-dependent loss of corticospinal motor tract function, lower limb spasticity, and weakness. Recent clinical use of next generation sequencing (NGS) methodologies suggests that they facilitate the diagnostic approach to HSP, but the power of NGS as a first-tier diagnostic procedure is unclear. The larger-than-expected genetic heterogeneity-there are over 80 potential disease-associated genes-and frequent overlap with other clinical conditions affecting the motor system make a molecular diagnosis in HSP cumbersome and time consuming. In a single-center, cross-sectional study, spanning 4 years, 239 subjects with a clinical diagnosis of HSP underwent molecular screening of a large set of genes, using two different customized NGS panels. The latest version of our targeted sequencing panel (SpastiSure3.0) comprises 118 genes known to be associated with HSP. Using an in-house validated bioinformatics pipeline and several in silico tools to predict mutation pathogenicity, we obtained a positive diagnostic yield of 29% (70/239), whereas variants of unknown significance (VUS) were found in 86 patients (36%), and 83 cases remained unsolved. This study is among the largest screenings of consecutive HSP index cases enrolled in real-life clinical-diagnostic settings. Its results corroborate NGS as a modern, first-step procedure for molecular diagnosis of HSP. It also disclosed a significant number of new mutations in ultra-rare genes, expanding the clinical spectrum, and genetic landscape of HSP, at least in Italy

    A cohort of 17 patients with kyphoscoliotic Ehlers-Danlos syndrome caused by biallelic mutations in FKBP14: expansion of the clinical and mutational spectrum and description of the natural history.

    Get PDF
    PurposeIn 2012 we reported in six individuals a clinical condition almost indistinguishable from PLOD1-kyphoscoliotic Ehlers-Danlos syndrome (PLOD1-kEDS), caused by biallelic mutations in FKBP14, and characterized by progressive kyphoscoliosis, myopathy, and hearing loss in addition to connective tissue abnormalities such as joint hypermobility and hyperelastic skin. FKBP14 is an ER-resident protein belonging to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases); it catalyzes the folding of type III collagen and interacts with type III, type VI, and type X collagens. Only nine affected individuals have been reported to date.MethodsWe report on a cohort of 17 individuals with FKBP14-kEDS and the follow-up of three previously reported patients, and provide an extensive overview of the disorder and its natural history based on clinical, biochemical, and molecular genetics data.ResultsBased on the frequency of the clinical features of 23 patients from the present and previous cohorts, we define major and minor features of FKBP14-kEDS. We show that myopathy is confirmed by histology and muscle imaging only in some patients, and that hearing impairment is predominantly sensorineural and may not be present in all individuals.ConclusionOur data further support the extensive clinical overlap with PLOD1-kEDS and show that vascular complications are rare manifestations of FKBP14-kEDS

    Next Generation Molecular Diagnosis of Hereditary Spastic Paraplegias: An Italian Cross-Sectional Study

    Get PDF
    Hereditary spastic paraplegia (HSP) refers to a group of genetically heterogeneous neurodegenerative motor neuron disorders characterized by progressive age-dependent loss of corticospinal motor tract function, lower limb spasticity, and weakness. Recent clinical use of next generation sequencing (NGS) methodologies suggests that they facilitate the diagnostic approach to HSP, but the power of NGS as a first-tier diagnostic procedure is unclear. The larger-than-expected genetic heterogeneity-there are over 80 potential disease-associated genes-and frequent overlap with other clinical conditions affecting the motor system make a molecular diagnosis in HSP cumbersome and time consuming. In a single-center, cross-sectional study, spanning 4 years, 239 subjects with a clinical diagnosis of HSP underwent molecular screening of a large set of genes, using two different customized NGS panels. The latest version of our targeted sequencing panel (SpastiSure3.0) comprises 118 genes known to be associated with HSP. Using an in-house validated bioinformatics pipeline and several in silico tools to predict mutation pathogenicity, we obtained a positive diagnostic yield of 29% (70/239), whereas variants of unknown significance (VUS) were found in 86 patients (36%), and 83 cases remained unsolved. This study is among the largest screenings of consecutive HSP index cases enrolled in real-life clinical-diagnostic settings. Its results corroborate NGS as a modern, first-step procedure for molecular diagnosis of HSP. It also disclosed a significant number of new mutations in ultra-rare genes, expanding the clinical spectrum, and genetic landscape of HSP, at least in Italy

    Genomic analyses in Cornelia de Lange Syndrome and related diagnoses: Novel candidate genes, <scp>genotype–phenotype</scp> correlations and common mechanisms

    Get PDF
    Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (&gt;60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS‐like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or “DTRs”). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype–phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population
    corecore