51 research outputs found

    Antibiotic resistance and virulence of faecal enterococci isolated from food-producing animals in Tunisia

    Get PDF
    Antimicrobial agents exert a selection pressure not only on pathogenic, but also on commensal bacteria of the intestinal tract of humans and animals. The aim of this work was to determine the occurrence of different enterococcal species and to analyse the prevalence of antimicrobial resistance and the mechanisms implicated, as well as the genetic diversity in enterococci recovered from faecal samples of food-producing animals (poultry, beef and sheep) in Tunisia. Antimicrobial resistance and the mechanisms implicated were studied in 87 enterococci recovered from 96 faecal samples from animals of Tunisian farms. Enterococcus faecium was the most prevalent species detected (46 %), followed by E. hirae (33.5 %). High percentages of resistance to erythromycin and tetracycline were found among our isolates, and lower percentages to aminoglycosides and ciprofloxacin were identified. Most of the tetracycline-resistant isolates carried the tet(M) and/or tet(L) genes. The erm(B) gene was detected in all erythromycin-resistant isolates. The ant(6)-Ia, aph(3)-Ia and aac(6)-aph(2) genes were detected in nine aminoglycoside-resistant isolates. Of our isolates, 11.5 % carried the gelE gene and exhibited gelatinase acitivity. The esp gene was detected in 10 % of our isolates and the hyl gene was not present in any isolate. The predominant species (E. faecium and E. hirae) showed a high genetic diversity by repetitive extragenic palindromic (REP)-PCR. Food animals might play a role in the spread through the food chain of enterococci with virulence and resistance traits to humans. © 2014 Springer-Verlag Berlin Heidelberg and the University of Milan

    Characterization of two polyvalent phages infecting Enterobacteriaceae

    Get PDF
    Bacteriophages display remarkable genetic diversity and host specificity. In this study, we explore phages infecting bacterial strains of the Enterobacteriaceae family because of their ability to infect related but distinct hosts. We isolated and characterized two novel virulent phages, SH6 and SH7, using a strain of Shigella flexneri as host bacterium. Morphological and genomic analyses revealed that phage SH6 belongs to the T1virus genus of the Siphoviridae family. Conversely, phage SH7 was classified in the T4virus genus of the Myoviridae family. Phage SH6 had a short latent period of 16 min and a burst size of 103 ± 16 PFU/infected cell while the phage SH7 latent period was 23 min with a much lower burst size of 26 ± 5 PFU/infected cell. Moreover, phage SH6 was sensitive to acidic conditions (pH < 5) while phage SH7 was stable from pH 3 to 11 for 1 hour. Of the 35 bacterial strains tested, SH6 infected its S. flexneri host strain and 8 strains of E. coli. Phage SH7 lysed additionally strains of E. coli O157:H7, Salmonella Paratyphi, and Shigella dysenteriae. The broader host ranges of these two phages as well as their microbiological properties suggest that they may be useful for controlling bacterial populations

    Species distribution, antibiotic resistance and virulence traits in canine and feline enterococci in Tunisia

    Get PDF
    In order to investigate the possible role of dogs and cats in the carriage and potential dissemination of resistant enterococci, seventy faecal samples from dogs and cats were tested for enterococci. Fifty-eight enterococci were recovered. Isolates were identified as Enterococcus faecium (n = 31) and E. faecalis (n = 14) E. durans (n = 6), E. casseliflavus (n = 2), E. hirae and E. gallinarum (2 isolates each). Enterococcal isolates showed resistance to ciprofloxacin (n = 35), erythromycin (n = 31), tetracycline (n = 25), kanamycin (n = 15), streptomycin (n = 13), pristinamycin (n = 11), gentamicin (n = 10), chloramphenicol (n = 8), and linezolid (n = 6). The gene erm(B) was detected in 22 out of 31 erythromycin-resistant enterococci. All tetracycline-resistant enterococci carried tet(M) and/or tet(L) genes. The gene aac(6′)-Ie-aph(2″)-Ia was identified in five of high-level gentamicin-resistant isolates, the genes aph(3′)-IIIa and/or aac(6′)-Ie-aph(2″)-Ia in eleven high-level kanamycin-resistant isolates and the gene ant(6)-Ia in eleven high-level streptomycin-resistant isolates. Only one strain harboured cat(A) gene, and five strains contained vat(E) or vat(D) genes. Virulence genes gel(E) (21 strains), esp (11 strains) and cylA/cylB (5 strains) were detected. High genetic diversity was demonstrated among E. faecium isolates by pulsed-field gel electrophoresis (PFGE). Dogs and cats can be carriers of antibiotic-resistant enterococci in their faeces that could shed into the household environment

    Genomic Analysis of Staphylococcus aureus of the Lineage CC130, Including mecC -Carrying MRSA and MSSA Isolates Recovered of Animal, Human, and Environmental Origins

    Get PDF
    Most methicillin resistant Staphylococcus aureus (MRSA) isolates harboring mecC gene belong to clonal complex CC130. This lineage has traditionally been regarded as animal-associated as it lacks the human specific immune evasion cluster (IEC), and has been recovered from a broad range of animal hosts. Nevertheless, sporadic mecC-MRSA human infections have been reported, with evidence of zoonotic transmission in some cases. The objective of this study was to investigate the whole-genome sequences of 18 S. aureus CC130 isolates [13 methicillin-resistant (mecC-MRSA) and five methicillin-susceptible (MSSA)] from different sequences types, obtained from a variety of host species and origins (human, livestock, wild birds and mammals, and water), and from different geographic locations, in order to identify characteristic markers and genomic features. Antibiotic resistance genes found among MRSA-CC130 were those associated with the SSCmecXI element. Most MRSA-CC130 strains carried a similar virulence gene profile. Additionally, six MRSA-CC130 possessed scn-sak and one MSSA-ST130 had lukMF’. The MSSA-ST700 strains were most divergent in their resistance and virulence genes. The pan-genome analysis showed that 29 genes were present solely in MRSA-CC130 (associated with SCCmecXI) and 21 among MSSA-CC130 isolates (associated with phages). The SCCmecXI, PBP3, GdpP, and AcrB were identical at the amino acid level in all strains, but some differences were found in PBP1, PBP2, PBP4, and YjbH proteins. An examination of the host markers showed that the 3’ region of the bacteriophage φ3 was nearly identical to the reference sequence. Truncated hlb gene was also found in scn-negative strains (two of them carrying sak-type gene). The dtlB gene of wild rabbit isolates included novel mutations. The vwbp gene was found in the three MSSA-ST700 strains from small ruminants and in one MSSA-ST130 from a red deer; these strains also carried a scn-type gene, different from the human and equine variants. Finally, a phylogenetic analysis showed that the three MSSA-ST700 strains and the two MSSA-ST130 strains cluster separately from the remaining MRSA-CC130 strains with the etD2 gene as marker for the main lineage. The presence of the human IEC cluster in some mecC-MRSA-CC130 strains suggests that these isolates may have had a human origin

    Genomic Analysis of Staphylococcus aureus of the Lineage CC130, Including mecC -Carrying MRSA and MSSA Isolates Recovered of Animal, Human, and Environmental Origins

    Get PDF
    Most methicillin resistant Staphylococcus aureus (MRSA) isolates harboring mecC gene belong to clonal complex CC130. This lineage has traditionally been regarded as animal-associated as it lacks the human specific immune evasion cluster (IEC), and has been recovered from a broad range of animal hosts. Nevertheless, sporadic mecC-MRSA human infections have been reported, with evidence of zoonotic transmission in some cases. The objective of this study was to investigate the whole-genome sequences of 18 S. aureus CC130 isolates [13 methicillin-resistant (mecC-MRSA) and five methicillin-susceptible (MSSA)] from different sequences types, obtained from a variety of host species and origins (human, livestock, wild birds and mammals, and water), and from different geographic locations, in order to identify characteristic markers and genomic features. Antibiotic resistance genes found among MRSA-CC130 were those associated with the SSCmecXI element. Most MRSA-CC130 strains carried a similar virulence gene profile. Additionally, six MRSA-CC130 possessed scn-sak and one MSSA-ST130 had lukMF’. The MSSA-ST700 strains were most divergent in their resistance and virulence genes. The pan-genome analysis showed that 29 genes were present solely in MRSA-CC130 (associated with SCCmecXI) and 21 among MSSA-CC130 isolates (associated with phages). The SCCmecXI, PBP3, GdpP, and AcrB were identical at the amino acid level in all strains, but some differences were found in PBP1, PBP2, PBP4, and YjbH proteins. An examination of the host markers showed that the 3’ region of the bacteriophage φ3 was nearly identical to the reference sequence. Truncated hlb gene was also found in scn-negative strains (two of them carrying sak-type gene). The dtlB gene of wild rabbit isolates included novel mutations. The vwbp gene was found in the three MSSA-ST700 strains from small ruminants and in one MSSA-ST130 from a red deer; these strains also carried a scn-type gene, different from the human and equine variants. Finally, a phylogenetic analysis showed that the three MSSA-ST700 strains and the two MSSA-ST130 strains cluster separately from the remaining MRSA-CC130 strains with the etD2 gene as marker for the main lineage. The presence of the human IEC cluster in some mecC-MRSA-CC130 strains suggests that these isolates may have had a human origin

    The effect of tobacco, XPC, ERCC2 and ERCC5 genetic variants in bladder cancer development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this work, we have conducted a case-control study in order to assess the effect of tobacco and three genetic polymorphisms in <it>XPC, ERCC2 and ERCC5 </it>genes (rs2228001, rs13181 and rs17655) in bladder cancer development in Tunisia. We have also tried to evaluate whether these variants affect the bladder tumor stage and grade.</p> <p>Methods</p> <p>The patients group was constituted of 193 newly diagnosed cases of bladder tumors. The controls group was constituted of non-related healthy subjects. The rs2228001, rs13181 and rs17655 polymorphisms were genotyped using a polymerase chain reaction-restriction fragment length polymorphism technique.</p> <p>Results</p> <p>Our data have reported that non smoker and light smoker patients (1-19PY) are protected against bladder cancer development. Moreover, light smokers have less risk for developing advanced tumors stage. When we investigated the effect of genetic polymorphisms in bladder cancer development we have found that ERCC2 and ERCC5 variants were not implicated in the bladder cancer occurrence. However, the mutated homozygous genotype for XPC gene was associated with 2.09-fold increased risk of developing bladder cancer compared to the control carrying the wild genotype (p = 0.03, OR = 2.09, CI 95% 1.09-3.99). Finally, we have found that the XPC, ERCC2 and ERCC5 variants don't affect the tumors stage and grade.</p> <p>Conclusion</p> <p>These results suggest that the mutated homozygous genotype for XPC gene was associated with increased risk of developing bladder. However we have found no association between rs2228001, rs13181 and rs17655 polymorphisms and tumors stage and grade.</p

    Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus.

    Get PDF
    Bicomponent pore-forming leukocidins are a family of potent toxins secreted by Staphylococcus aureus, which target white blood cells preferentially and consist of an S- and an F-component. The S-component recognizes a receptor on the host cell, enabling high-affinity binding to the cell surface, after which the toxins form a pore that penetrates the cell lipid bilayer. Until now, six different leukocidins have been described, some of which are host and cell specific. Here, we identify and characterise a novel S. aureus leukocidin; LukPQ. LukPQ is encoded on a 45 kb prophage (ΦSaeq1) found in six different clonal lineages, almost exclusively in strains cultured from equids. We show that LukPQ is a potent and specific killer of equine neutrophils and identify equine-CXCRA and CXCR2 as its target receptors. Although the S-component (LukP) is highly similar to the S-component of LukED, the species specificity of LukPQ and LukED differs. By forming non-canonical toxin pairs, we identify that the F-component contributes to the observed host tropism of LukPQ, thereby challenging the current paradigm that leukocidin specificity is driven solely by the S-component
    corecore