26 research outputs found

    Dancing for living Women's experience of 5 Rhythms dance and the effects on their emotional wellbeing

    No full text
    Includes bibliographical references. Title from coverSIGLEAvailable from British Library Document Supply Centre- DSC:m03/38987 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Tracking long-term human impacts on landscape, vegetal biodiversity and water quality in the Lake Aydat catchment (Auvergne, France) using pollen, non-pollen palynomorphs and diatom assemblages

    No full text
    International audiencePalaeoenvironmental studies allow the assessment of long-term human–climate–environmental interactions, and furnish valuable tools for the sustainable management of lacustrine ecosystems. A good example is the multi-proxy study of Lake Aydat's 19 m sedimentary core. Previous research revealed the role of climate and human activities on lake sedimentation, and identified two sedimentary units (6700 ± 200 to 3180 ± 90 and1770 ± 60 cal. yr BP to present) separated by an erosive mass-wasting deposit (Lavrieux et al., 2013a). Pollen, non-pollen palynomorphs (e.g. fungal and algal spores, rotifer resting eggs), and diatom-based trophic reconstructions have been used to track the impacts of past land use on landscape evolution, vegetal biodiversity and water quality. Palaeoenvironmental data were also compared with local archaeo-historical datasets which allowed refined landscape reconstructions, especially for late Antiquity. The results obtained demonstrate that even Neolithic and Bronze Age human activities (between ca. 4600 and 4300 cal. yr BP and between ca. 3900 and 3500 cal. yr BP) had a discernible influence on catchment vegetation and lacustrine trophic dynamics of Lake Aydat, underlining the vulnerability of the ecosystem. Recurrent and complex models of past vegetation changes, phases of water nutrient over-enrichment and lake resilience were identified and related to grazing activities, but also to land use practises, which have been overlooked in Auvergne, such as mountain agriculture and hemp retting

    A Molecular Systematic Survey of Cultured Microbial Associates of Deep-Water Marine Invertebrates

    No full text
    A taxonomic survey was conducted to determine the microbial diversity held within the Harbor Branch Oceanographic Marine Microbial Culture Collection (HBMMCC). The collection consists of approximately 17,000 microbial isolates, with 11,000 from a depth of greater than 150 ft seawater. A total of 2273 heterotrophic bacterial isolates were inventoried using the DNA fingerprinting technique amplified rDNA restriction analysis on approximately 750–800 base pairs (bp) encompassing hypervariable regions in the 5′ portion of the small subunit (SSU) 16S rRNA gene. Restriction fragment length polymorphism patterns obtained from restriction digests with RsaI, HaeIII, and HhaI were used to infer taxonomic similarity. SSU 16S rDNA fragments were sequenced from a total of 356 isolates for more definitive taxonomic analysis. Sequence results show that this subset of the HBMMCC contains 224 different phylotypes from six major bacterial clades (Proteobacteria (Alpha, Beta, Gamma), Cytophaga, Flavobacteria, and Bacteroides (CFB), Gram+ high GC content, Gram+ low GC content). The 2273 microorganisms surveyed encompass 834 α-Proteobacteria (representing 60 different phylotypes), 25 β-Proteobacteria (3 phylotypes), 767 γ-Proteobacteria (77 phylotypes), 122 CFB (17 phylotypes), 327 Gram+ high GC content (43 phylotypes), and 198 Gram+ low GC content isolates (24 phylotypes). Notably, 11 phylotypes were ⩽93% similar to the closest sequence match in the GenBank database even after sequencing a larger portion of the 16S rRNA gene (∼1400 bp), indicating the likely discovery of novel microbial taxa. Furthermore, previously reported “uncultured” microbes, such as sponge-specific isolates, are part of the HBMMCC. The results of this research will be available online as a searchable taxonomic database (www.hboi.edu/dbmr/dbmr_hbmmd.html)

    Comparison of Dixon Sequences for Estimation of Percent Breast Fibroglandular Tissue.

    No full text
    OBJECTIVES:To evaluate sources of error in the Magnetic Resonance Imaging (MRI) measurement of percent fibroglandular tissue (%FGT) using two-point Dixon sequences for fat-water separation. METHODS:Ten female volunteers (median age: 31 yrs, range: 23-50 yrs) gave informed consent following Research Ethics Committee approval. Each volunteer was scanned twice following repositioning to enable an estimation of measurement repeatability from high-resolution gradient-echo (GRE) proton-density (PD)-weighted Dixon sequences. Differences in measures of %FGT attributable to resolution, T1 weighting and sequence type were assessed by comparison of this Dixon sequence with low-resolution GRE PD-weighted Dixon data, and against gradient-echo (GRE) or spin-echo (SE) based T1-weighted Dixon datasets, respectively. RESULTS:%FGT measurement from high-resolution PD-weighted Dixon sequences had a coefficient of repeatability of ±4.3%. There was no significant difference in %FGT between high-resolution and low-resolution PD-weighted data. Values of %FGT from GRE and SE T1-weighted data were strongly correlated with that derived from PD-weighted data (r = 0.995 and 0.96, respectively). However, both sequences exhibited higher mean %FGT by 2.9% (p < 0.0001) and 12.6% (p < 0.0001), respectively, in comparison with PD-weighted data; the increase in %FGT from the SE T1-weighted sequence was significantly larger at lower breast densities. CONCLUSION:Although measurement of %FGT at low resolution is feasible, T1 weighting and sequence type impact on the accuracy of Dixon-based %FGT measurements; Dixon MRI protocols for %FGT measurement should be carefully considered, particularly for longitudinal or multi-centre studies
    corecore