153 research outputs found

    The vitamin K-dependent anticoagulant factor, protein S, regulates vascular permeability

    Get PDF
    Protein S (PROS1) is a vitamin K-dependent anticoagulant factor, which also acts as an agonist for the TYRO3, AXL, and MERTK (TAM) tyrosine kinase receptors. PROS1 is produced by the endothelium which also expresses TAM receptors, but little is known about its effects on vascular function and permeability. Transwell permeability assays as well as Western blotting and immunostaining analysis were used to monitor the possible effects of PROS1 on both endothelial cell permeability and on the phosphorylation state of specific signaling proteins. We show that human PROS1, at its circulating concentrations, substantially increases both the basal and VEGFA-induced permeability of endothelial cell (EC) monolayers. PROS1 induces p38 MAPK (Mitogen Activated Protein Kinase), Rho/ROCK (Rho-associated protein kinase) pathway activation, and actin filament remodeling, as well as substantial changes in Vascular Endothelial Cadherin (VEC) distribution and its phosphorylation on Ser665 and Tyr685. It also mediates c-Src and PAK-1 (p21-activated kinase 1) phosphorylation on Tyr416 and Ser144, respectively. Exposure of EC to human PROS1 induces VEC internalization as well as its cleavage into a released fragment of 100 kDa and an intracellular fragment of 35 kDa. Using anti-TAM neutralizing antibodies, we demonstrate that PROS1-induced VEC and c-Src phosphorylation are mediated by both the MERTK and TYRO3 receptors but do not involve the AXL receptor. MERTK and TYRO3 receptors are also responsible for mediating PROS1-induced MLC (Myosin Light Chain) phosphorylation on a site targeted by the Rho/ROCK pathway. Our report provides evidence for the activation of the c-Src/VEC and Rho/ROCK/MLC pathways by PROS1 for the first time and points to a new role for PROS1 as an endogenous vascular permeabilizing factor

    DGKI Methylation Status Modulates the Prognostic Value of MGMT in Glioblastoma Patients Treated with Combined Radio-Chemotherapy with Temozolomide

    No full text
    International audienceBackgroundConsistently reported prognostic factors for glioblastoma (GBM) are age, extent of surgery, performance status, IDH1 mutational status, and MGMT promoter methylation status. We aimed to integrate biological and clinical prognostic factors into a nomogram intended to predict the survival time of an individual GBM patient treated with a standard regimen. In a previous study we showed that the methylation status of the DGKI promoter identified patients with MGMT-methylated tumors that responded poorly to the standard regimen. We further evaluated the potential prognostic value of DGKI methylation status.Methods399 patients with newly diagnosed GBM and treated with a standard regimen were retrospectively included in this study. Survival modelling was performed on two patient populations: intention-to-treat population of all included patients (population 1) and MGMT-methylated patients (population 2). Cox proportional hazard models were fitted to identify the main prognostic factors. A nomogram was developed for population 1. The prognostic value of DGKI promoter methylation status was evaluated on population 1 and population 2.ResultsThe nomogram-based stratification of the cohort identified two risk groups (high/low) with significantly different median survival. We validated the prognostic value of DGKI methylation status for MGMT-methylated patients. We also demonstrated that the DGKI methylation status identified 22% of poorly responding patients in the low-risk group defined by the nomogram.ConclusionsOur results improve the conventional MGMT stratification of GBM patients receiving standard treatment. These results could help the interpretation of published or ongoing clinical trial outcomes and refine patient recruitment in the future

    The tumoral A genotype of the MGMT rs34180180 single-nucleotide polymorphism in aggressive gliomas is associated with shorter patients' survival

    Get PDF
    Malignant gliomas are the most common primary brain tumors. Grade III and IV gliomas harboring wild-type IDH1/2 are the most aggressive. In addition to surgery and radiotherapy, concomitant and adjuvant chemotherapy with temozolomide (TMZ) significantly improves overall survival (OS). The methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter is predictive of TMZ response and a prognostic marker of cancer outcome. However, the promoter regions the methylation of which correlates best with survival in aggressive glioma and whether the promoter methylation status predictive value could be refined or improved by other MGMT-associated molecular markers are not precisely known. In a cohort of 87 malignant gliomas treated with radiotherapy and TMZ-based chemotherapy, we retrospectively determined the MGMT promoter methylation status, genotyped single nucleotide polymorphisms (SNPs) in the promoter region and quantified MGMT mRNA expression level. Each of these variables was correlated with each other and with the patients' OS. We found that methylation of the CpG sites within MGMT exon 1 best correlated with OS and MGMT expression levels, and confirmed MGMT methylation as a stronger independent prognostic factor compared to MGMT transcription levels. Our main finding is that the presence of only the A allele at the rs34180180 SNP in the tumor was significantly associated with shorter OS, independently of the MGMT methylation status. In conclusion, in the clinic, rs34180180 SNP genotyping could improve the prognostic value of the MGMT promoter methylation assay in patients with aggressive glioma treated with TMZ.ARC -Fondation ARC pour la Recherche sur le Cancer(EML20120904843

    Prognostic value of increase in transcript levels of Tp73 ΔEx2-3 isoforms in low-grade glioma patients

    Get PDF
    Glial tumours are a devastating, poorly understood condition carrying a gloomy prognosis for which clinicians sorely lack reliable predictive parameters facilitating a sound treatment strategy. Tp73, a p53 family member, expresses two main classes of isoforms – transactivatory activity (TA)p73 and ΔTAp73 – exhibiting tumour suppressor gene and oncogene properties, respectively. The authors examined their expression status in high- and low-grade adult gliomas. Isoform-specific real-time reverse transcription-polymerase chain reaction was used for the analysis of Tp73 isoform transcript expression in a series of 51 adult patients harbouring glial tumours, in order to compare tumour grades with each other, and with non-tumoural samples obtained from epileptic patients as well. Our data demonstrate increase of TAp73 and ΔTAp73 transcript levels at onset and early stage of the disease. We also show that ΔEx2–3 isoform expression in low-grade tumours anticipates clinical and imaging progression to higher grades, and correlates to the patients' survival. Expression levels of P1 promoter generated Tp73 isoforms – and particularly ΔEx2–3 – indeed allow for prediction of the clinical progression of low-grade gliomas in adults. Our data are the first such molecular biology report regarding low-grade tumours and as such should be of help for sound decision-making

    Prognostic Value of Three Different Methods of MGMT Promoter Methylation Analysis in a Prospective Trial on Newly Diagnosed Glioblastoma

    Get PDF
    Hypermethylation in the promoter region of the MGMT gene encoding the DNA repair protein O6-methylguanine-DNA methyltransferase is among the most important prognostic factors for patients with glioblastoma and predicts response to treatment with alkylating agents like temozolomide. Hence, the MGMT status is widely determined in most clinical trials and frequently requested in routine diagnostics of glioblastoma. Since various different techniques are available for MGMT promoter methylation analysis, a generally accepted consensus as to the most suitable diagnostic method remains an unmet need. Here, we assessed methylation-specific polymerase chain reaction (MSP) as a qualitative and semi-quantitative method, pyrosequencing (PSQ) as a quantitative method, and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) as a semi-quantitative method in a series of 35 formalin-fixed, paraffin-embedded glioblastoma tissues derived from patients treated in a prospective clinical phase II trial that tested up-front chemoradiotherapy with dose-intensified temozolomide (UKT-05). Our goal was to determine which of these three diagnostic methods provides the most accurate prediction of progression-free survival (PFS). The MGMT promoter methylation status was assessable by each method in almost all cases (n = 33/35 for MSP; n = 35/35 for PSQ; n = 34/35 for MS-MLPA). We were able to calculate significant cut-points for the continuous methylation signals at each CpG site analysed by PSQ (range, 11.5 to 44.9%) and at one CpG site assessed by MS-MLPA (3.6%) indicating that a dichotomisation of continuous methylation data as a prerequisite for comparative survival analyses is feasible. Our results show that, unlike MS-MLPA, MSP and PSQ provide a significant improvement of predicting PFS compared with established clinical prognostic factors alone (likelihood ratio tests: p<0.001). Conclusively, taking into consideration prognostic value, cost effectiveness and ease of use, we recommend pyrosequencing for analyses of MGMT promoter methylation in high-throughput settings and MSP for clinical routine diagnostics with low sample numbers

    A Class III Semaphorin (Sema3e) Inhibits Mouse Osteoblast Migration and Decreases Osteoclast Formation In Vitro

    Get PDF
    Originally identified as axonal guidance cues, semaphorins are expressed throughout many different tissues and regulate numerous non-neuronal processes. We demonstrate that most class III semaphorins are expressed in mouse osteoblasts and are differentially regulated by cell growth and differentiation: Sema3d expression is increased and Sema3e expression decreased during proliferation in culture, while expression of Sema3a is unaffected by cell density but increases in cultures of mineralizing osteoblasts. Expression of Sema3a, -3e, and -3d is also differentially regulated by osteogenic stimuli; inhibition of GSK3β decreased expression of Sema3a and -3e, while 1,25-(OH)2D3 increased expression of Sema3e. Parathyroid hormone had no effect on expression of Sema3a, -3b, or -3d. Osteoblasts, macrophages, and osteoclasts express the Sema3e receptor PlexinD1, suggesting an autocrine and paracrine role for Sema3e. No effects of recombinant Sema3e on osteoblast proliferation, differentiation, or mineralization were observed; but Sema3e did inhibit the migration of osteoblasts in a wound-healing assay. The formation of multinucleated, tartrate-resistant acid phosphatase–positive osteoclasts was decreased by 81% in cultures of mouse bone marrow macrophages incubated with 200 ng/mL Sema3e. Correspondingly, decreased expression of osteoclast markers (Itgb3, Acp5, Cd51, Nfatc1, CalcR, and Ctsk) was observed by qPCR in macrophage cultures differentiated in the presence of Sema3e. Our results demonstrate that class III semaphorins are expressed by osteoblasts and differentially regulated by differentiation, mineralization, and osteogenic stimuli. Sema3e is a novel inhibitor of osteoclast formation in vitro and may play a role in maintaining local bone homeostasis, potentially acting as a coupling factor between osteoclasts and osteoblasts

    Increasing the Number of Thyroid Lesions Classes in Microarray Analysis Improves the Relevance of Diagnostic Markers

    Get PDF
    BackgroundGenetic markers for thyroid cancers identified by microarray analysis have offered limited predictive accuracy so far because of the few classes of thyroid lesions usually taken into account. To improve diagnostic relevance, we have simultaneously analyzed microarray data from six public datasets covering a total of 347 thyroid tissue samples representing 12 histological classes of follicular lesions and normal thyroid tissue. Our own dataset, containing about half the thyroid tissue samples, included all categories of thyroid lesions. Methodology/Principal Findings Classifier predictions were strongly affected by similarities between classes and by the number of classes in the training sets. In each dataset, sample prediction was improved by separating the samples into three groups according to class similarities. The cross-validation of differential genes revealed four clusters with functional enrichments. The analysis of six of these genes (APOD, APOE, CLGN, CRABP1, SDHA and TIMP1) in 49 new samples showed consistent gene and protein profiles with the class similarities observed. Focusing on four subclasses of follicular tumor, we explored the diagnostic potential of 12 selected markers (CASP10, CDH16, CLGN, CRABP1, HMGB2, ALPL2, ADAMTS2, CABIN1, ALDH1A3, USP13, NR2F2, KRTHB5) by real-time quantitative RT-PCR on 32 other new samples. The gene expression profiles of follicular tumors were examined with reference to the mutational status of the Pax8-PPARγ, TSHR, GNAS and NRAS genes. Conclusion/Significance We show that diagnostic tools defined on the basis of microarray data are more relevant when a large number of samples and tissue classes are used. Taking into account the relationships between the thyroid tumor pathologies, together with the main biological functions and pathways involved, improved the diagnostic accuracy of the samples. Our approach was particularly relevant for the classification of microfollicular adenomas

    Prognostic molecular markers with no impact on decision-making: the paradox of gliomas based on a prospective study

    Get PDF
    This study assessed the prognostic value of several markers involved in gliomagenesis, and compared it with that of other clinical and imaging markers already used. Four-hundred and sixteen adult patients with newly diagnosed glioma were included over a 3-year period and tumour suppressor genes, oncogenes, MGMT and hTERT expressions, losses of heterozygosity, as well as relevant clinical and imaging information were recorded. This prospective study was based on all adult gliomas. Analyses were performed on patient groups selected according to World Health Organization histoprognostic criteria and on the entire cohort. The endpoint was overall survival, estimated by the Kaplan–Meier method. Univariate analysis was followed by multivariate analysis according to a Cox model. p14ARF, p16INK4A and PTEN expressions, and 10p 10q23, 10q26 and 13q LOH for the entire cohort, hTERT expression for high-grade tumours, EGFR for glioblastomas, 10q26 LOH for grade III tumours and anaplastic oligodendrogliomas were found to be correlated with overall survival on univariate analysis and age and grade on multivariate analysis only. This study confirms the prognostic value of several markers. However, the scattering of the values explained by tumour heterogeneity prevents their use in individual decision-making
    corecore