53 research outputs found

    Efficacy and Safety of Intravenous rtPA in Ischemic Strokes Due to Small-Vessel Occlusion: Systematic Review and Meta-Analysis

    Get PDF
    Intravenous recombinant tissue plasminogen activator (iv-rtPA) has been routinely used to treat ischemic stroke for 25 years, following large clinical trials. However, there are few prospective studies on the efficacy and safety of this therapy in strokes attributed to cerebral small vessel disease (SVD). We evaluated functional outcome (modified Rankin scale, mRS) and symptomatic intracerebral hemorrhage (sICH) using all available data on the effects of iv-rtPA in SVD-related ischemic stroke (defined either using neuroimaging, clinical features, or both). Using fixed-effect and random-effects models, we calculated the pooled effect estimates with regard to excellent and favorable outcomes (mRS=0-1 and 0-2 respectively, at 3 months), and the rate of sICH. Twenty-three studies fulfilled the eligibility criteria, 11 of which were comparative, and there were only 3 randomized clinical trials. In adjusted analyses, there was an increased odds of excellent outcome (adjusted OR=1.53, 95% CI: 1.29-1.82, I2: 0%) or favorable outcome (adjusted OR=1.68, 95% CI: 1.31-2.15,I2: 0%) in patients who received iv-rtPA compared with placebo. Across the six studies which reported it, the incidence of sICH was higher in the treatment group (M-H RR = 8.83, 95% CI: 2.76-28.27). The pooled rate of sICH in patients with SVD administered iv-rtPA was only 0.72% (95% CI: 0.12%-1.64%). We conclude that when ischemic stroke attributed to SVD is considered separately, available data on the effects of iv-rtPA therapy are insufficient for the highest level of recommendation, but it seems to be safe. Although further therapeutic trials in SVD-related ischemic stroke appear to be justified, our findings should not prevent its continued use for this group of patients in clinical practice

    Brain choline concentration: early quantitative marker of ischemia and infarct expansion?

    Get PDF
    Objective: Better prediction of tissue prognosis in acute stroke might improve treatment decisions. We hypothesized that there are metabolic ischemic disturbances measurable non-invasively by proton MR spectroscopy (1HMRS) that occur earlier than any structural changes visible on diffusion tensor imaging (DTI), which may therefore serve for territorial identification of “tissue at risk”. Methods: We performed multi-voxel 1HMRS plus DTI within a maximum of 26 hours, and DTI at three-seven days, after ischemic stroke. We compared choline, lactate, NAA, creatine concentrations in normal-appearing voxels that became infarcted("infarct expansion”), with normal-appearing voxels around the infarct that remained “healthy”(“non-expansion”) on follow-up DTI. Each “infarct expansion” voxel was additionally classified as either “complete infarct expansion”(infarcted tissue on follow-up DTI covered ≥50% of the voxel) or “partial infarct expansion”(<50% of voxel). Results: In 31 patients (NIHSS:0–28) there were 108 infarct "non-expansion” voxels and 113 infarct "expansion” voxels (of which 80 were “complete expansion” and 33 “partial expansion” voxels). Brain choline concentration increased for each change in expansion category from "non-expansion", via "partial expansion" to "complete expansion" (2423, 3843, 4158i.u.; p<0.05). Changes in lactate, NAA and creatine concentrations in expansion category were insignificant although for lactate there was a tendency to such association. Conclusions: Choline concentration measurable with 1HMRS was elevated in peri-ischemic normal-appearing brain that became infarcted by three-seven days. The degree of elevation was associated with the amount of infarct expansion. 1HMRS might identify DTI-normal appearing tissue at risk of conversion to infarction in early stroke

    Neuroprotection or Increased Brain Damage Mediated by Temperature in Stroke Is Time Dependent

    Get PDF
    The control of temperature during the acute phase of stroke may be a new therapeutic target that can be applied in all stroke patients, however therapeutic window or timecourse of the temperature effect is not well established. Our aim is to study the association between changes in body temperature in the first 72 hours and outcome in patients with ischemic (IS) and hemorrhagic (ICH) stroke. We prospectively studied 2931 consecutive patients (2468 with IS and 463 with ICH). Temperature was obtained at admission, and at 24, 48 and 72 hours after admission. Temperature was categorized as low (<36°C), normal (36–37°C) and high (>37°C). As the main variable, we studied functional outcome at 3 months determined by modified Rankin Scale

    Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke.

    Get PDF
    OBJECTIVE: For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms. METHODS: We first sought to identify genetic associations with white matter hyperintensities in a stroke population, and then examined whether genetic loci previously linked to WMHV in community populations are also associated in stroke patients. Having established that genetic associations are shared between the 2 populations, we performed a meta-analysis testing which associations with WMHV in stroke-free populations are associated overall when combined with stroke populations. RESULTS: There were no associations at genome-wide significance with WMHV in stroke patients. All previously reported genome-wide significant associations with WMHV in community populations shared direction of effect in stroke patients. In a meta-analysis of the genome-wide significant and suggestive loci (p < 5 × 10(-6)) from community populations (15 single nucleotide polymorphisms in total) and from stroke patients, 6 independent loci were associated with WMHV in both populations. Four of these are novel associations at the genome-wide level (rs72934505 [NBEAL1], p = 2.2 × 10(-8); rs941898 [EVL], p = 4.0 × 10(-8); rs962888 [C1QL1], p = 1.1 × 10(-8); rs9515201 [COL4A2], p = 6.9 × 10(-9)). CONCLUSIONS: Genetic associations with WMHV are shared in otherwise healthy individuals and patients with stroke, indicating common genetic susceptibility in cerebral small vessel disease.Funding for collection, genotyping, and analysis of stroke samples was provided by Wellcome Trust Case Control Consortium-2, a functional genomics grant from the Wellcome Trust (DNA-Lacunar), the Stroke Association (DNA-lacunar), the Intramural Research Program of National Institute of Ageing (Massachusetts General Hospital [MGH] and Ischemic Stroke Genetics Study [ISGS]), National Institute of Neurological Disorders and Stroke (Siblings With Ischemic Stroke Study, ISGS, and MGH), the American Heart Association/Bugher Foundation Centers for Stroke Prevention Research (MGH), Deane Institute for Integrative Study of Atrial Fibrillation and Stroke (MGH), National Health and Medical Research Council (Australian Stroke Genetics Collaborative), and Italian Ministry of Health (Milan). Additional support for sample collection came from the Medical Research Council, National Institute of Health Research Biomedical Research Centre and Acute Vascular Imaging Centre (Oxford), Wellcome Trust and Binks Trust (Edinburgh), and Vascular Dementia Research Foundation (Munich). MT is supported by a project grant from the Stroke Association (TSA 2013/01). HSM is supported by an NIHR Senior Investigator award. HSM and SB are supported by the NIHR Cambridge University Hospitals Comprehensive Biomedical Research Centre. VT and RL are supported by grants from FWO Flanders. PR holds NIHR and Wellcome Trust Senior Investigator Awards. PAS is supported by an MRC Fellowship. CML’s research is supported by the National Institute for Health Research Biomedical Research Centre (BRC) based at Guy's and St Thomas' NHS Foundation Trust and King's College London, and the BRC for Mental Health at South London and Maudsley NHS Foundation Trust and King’s College London. This is the final version of the article. It first appeared from Wolters Kluwer via http://dx.doi.org/10.1212/WNL.000000000000226

    Primary stroke prevention worldwide : translating evidence into action

    Get PDF
    Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis ?erimagi? (Poliklinika Glavi?, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo Ant?nio, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Cz?onkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), Jo?o Sargento-Freitas (Centro Hospitalar e Universit?rio de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gon?alves (Hospital S?o Jos? do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurj?ns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gda?sk, Gda?sk, Poland), Kursad Kutluk (Dokuz Eylul University, ?zmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Micha? Maluchnik (Ministry of Health, Warsaw, Poland), Evija Migl?ne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gda?sk, Gda?sk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis Čerimagić (Poliklinika Glavić, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo António, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Członkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), João Sargento-Freitas (Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gonçalves (Hospital São José do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurjāns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gdańsk, Gdańsk, Poland), Kursad Kutluk (Dokuz Eylul University, İzmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Michał Maluchnik (Ministry of Health, Warsaw, Poland), Evija Miglāne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gdańsk, Gdańsk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: VLF declares that the PreventS web app and Stroke Riskometer app are owned and copyrighted by Auckland University of Technology; has received grants from the Brain Research New Zealand Centre of Research Excellence (16/STH/36), Australian National Health and Medical Research Council (NHMRC; APP1182071), and World Stroke Organization (WSO); is an executive committee member of WSO, honorary medical director of Stroke Central New Zealand, and CEO of New Zealand Stroke Education charitable Trust. AGT declares funding from NHMRC (GNT1042600, GNT1122455, GNT1171966, GNT1143155, and GNT1182017), Stroke Foundation Australia (SG1807), and Heart Foundation Australia (VG102282); and board membership of the Stroke Foundation (Australia). SLG is funded by the National Health Foundation of Australia (Future Leader Fellowship 102061) and NHMRC (GNT1182071, GNT1143155, and GNT1128373). RM is supported by the Implementation Research Network in Stroke Care Quality of the European Cooperation in Science and Technology (project CA18118) and by the IRIS-TEPUS project from the inter-excellence inter-cost programme of the Ministry of Education, Youth and Sports of the Czech Republic (project LTC20051). BN declares receiving fees for data management committee work for SOCRATES and THALES trials for AstraZeneca and fees for data management committee work for NAVIGATE-ESUS trial from Bayer. All other authors declare no competing interests. Publisher Copyright: © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseStroke is the second leading cause of death and the third leading cause of disability worldwide and its burden is increasing rapidly in low-income and middle-income countries, many of which are unable to face the challenges it imposes. In this Health Policy paper on primary stroke prevention, we provide an overview of the current situation regarding primary prevention services, estimate the cost of stroke and stroke prevention, and identify deficiencies in existing guidelines and gaps in primary prevention. We also offer a set of pragmatic solutions for implementation of primary stroke prevention, with an emphasis on the role of governments and population-wide strategies, including task-shifting and sharing and health system re-engineering. Implementation of primary stroke prevention involves patients, health professionals, funders, policy makers, implementation partners, and the entire population along the life course.publishersversionPeer reviewe

    Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes

    Get PDF
    AbstractObjectiveWe sought to assess whether genetic risk factors for atrial fibrillation can explain cardioembolic stroke risk.MethodsWe evaluated genetic correlations between a prior genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously-validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors.ResultsWe observed strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson’s r=0.77 and 0.76, respectively, across SNPs with p &lt; 4.4 × 10−4 in the prior AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio (OR) per standard deviation (sd) = 1.40, p = 1.45×10−48), explaining ∼20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per sd = 1.07, p = 0.004), but no other primary stroke subtypes (all p &gt; 0.1).ConclusionsGenetic risk for AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.</jats:sec
    corecore