134 research outputs found

    Gli2 and MEF2C activate each other's expression and function synergistically during cardiomyogenesis in vitro

    Get PDF
    The transcription factors Gli2 (glioma-associated factor 2), which is a transactivator of Sonic Hedgehog (Shh) signalling, and myocyte enhancer factor 2C (MEF2C) play important roles in the development of embryonic heart muscle and enhance cardiomyogenesis in stem cells. Although the physiological importance of Shh signalling and MEF2 factors in heart development is well known, the mechanistic understanding of their roles is unclear. Here, we demonstrate that Gli2 and MEF2C activated each other's expression while enhancing cardiomyogenesis in differentiating P19 EC cells. Furthermore, dominant-negative mutant proteins of either Gli2 or MEF2C repressed each other's expression, while impairing cardiomyogenesis in P19 EC cells. In addition, chromatin immunoprecipitation (ChIP) revealed association of Gli2 to the Mef2c gene, and of MEF2C to the Gli2 gene in differentiating P19 cells. Finally, co-immunoprecipitation studies showed that Gli2 and MEF2C proteins formed a complex, capable of synergizing on cardiomyogenesis-related promoters containing both Gli- and MEF2-binding elements. We propose a model whereby Gli2 and MEF2C bind each other's regulatory elements, activate each other's expression and form a protein complex that synergistically activates transcription, enhancing cardiac muscle development. This model links Shh signalling to MEF2C function during cardiomyogenesis and offers mechanistic insight into their in vivo functions

    Gli2 and MEF2C activate each other's expression and function synergistically during cardiomyogenesis in vitro

    Get PDF
    The transcription factors Gli2 (glioma-associated factor 2), which is a transactivator of Sonic Hedgehog (Shh) signalling, and myocyte enhancer factor 2C (MEF2C) play important roles in the development of embryonic heart muscle and enhance cardiomyogenesis in stem cells. Although the physiological importance of Shh signalling and MEF2 factors in heart development is well known, the mechanistic understanding of their roles is unclear. Here, we demonstrate that Gli2 and MEF2C activated each other's expression while enhancing cardiomyogenesis in differentiating P19 EC cells. Furthermore, dominant-negative mutant proteins of either Gli2 or MEF2C repressed each other's expression, while impairing cardiomyogenesis in P19 EC cells. In addition, chromatin immunoprecipitation (ChIP) revealed association of Gli2 to the Mef2c gene, and of MEF2C to the Gli2 gene in differentiating P19 cells. Finally, co-immunoprecipitation studies showed that Gli2 and MEF2C proteins formed a complex, capable of synergizing on cardiomyogenesis-related promoters containing both Gli- and MEF2-binding elements. We propose a model whereby Gli2 and MEF2C bind each other's regulatory elements, activate each other's expression and form a protein complex that synergistically activates transcription, enhancing cardiac muscle development. This model links Shh signalling to MEF2C function during cardiomyogenesis and offers mechanistic insight into their in vivo functions

    BMP action in skeletogenesis involves attenuation of retinoid signaling

    Get PDF
    The bone morphogenetic protein (BMP) and growth and differentiation factor (GDF) signaling pathways have well-established and essential roles within the developing skeleton in coordinating the formation of cartilaginous anlagen. However, the identification of bona fide targets that underlie the action of these signaling molecules in chondrogenesis has remained elusive. We have identified the gene for the retinoic acid (RA) synthesis enzyme Aldh1a2 as a principal target of BMP signaling; prochondrogenic BMPs or GDFs lead to attenuation of Aldh1a2 expression and, consequently, to reduced activation of the retinoid signaling pathway. Consistent with this, antagonism of retinoid signaling phenocopies BMP4 action, whereas RA inhibits the chondrogenic stimulatory activity of BMP4. BMP4 also down-regulates Aldh1a2 expression in organ culture and, consistent with this, Aldh1a2 is actively excluded from the developing cartilage anlagens. Collectively, these findings provide novel insights into BMP action and demonstrate that BMP signaling governs the fate of prechondrogenic mesenchyme, at least in part, through regulation of retinoid signaling

    Retinoic acid enhances skeletal muscle progenitor formation and bypasses inhibition by bone morphogenetic protein 4 but not dominant negative Ξ²-catenin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding stem cell differentiation is essential for the future design of cell therapies. While retinoic acid (RA) is the most potent small molecule enhancer of skeletal myogenesis in stem cells, the stage and mechanism of its function has not yet been elucidated. Further, the intersection of RA with other signalling pathways that stimulate or inhibit myogenesis (such as Wnt and BMP4, respectively) is unknown. Thus, the purpose of this study is to examine the molecular mechanisms by which RA enhances skeletal myogenesis and interacts with Wnt and BMP4 signalling during P19 or mouse embryonic stem (ES) cell differentiation.</p> <p>Results</p> <p>Treatment of P19 or mouse ES cells with low levels of RA led to an enhancement of skeletal myogenesis by upregulating the expression of the mesodermal marker, Wnt3a, the skeletal muscle progenitor factors Pax3 and Meox1, and the myogenic regulatory factors (MRFs) MyoD and myogenin. By chromatin immunoprecipitation, RA receptors (RARs) bound directly to regulatory regions in the Wnt3a, Pax3, and Meox1 genes and RA activated a Ξ²-catenin-responsive promoter in aggregated P19 cells. In the presence of a dominant negative Ξ²-catenin/engrailed repressor fusion protein, RA could not bypass the inhibition of skeletal myogenesis nor upregulate Meox1 or MyoD. Thus, RA functions both upstream and downstream of Wnt signalling. In contrast, it functions downstream of BMP4, as it abrogates BMP4 inhibition of myogenesis and Meox1, Pax3, and MyoD expression. Furthermore, RA downregulated BMP4 expression and upregulated the BMP4 inhibitor, Tob1. Finally, RA inhibited cardiomyogenesis but not in the presence of BMP4.</p> <p>Conclusion</p> <p>RA can enhance skeletal myogenesis in stem cells at the muscle specification/progenitor stage by activating RARs bound directly to mesoderm and skeletal muscle progenitor genes, activating Ξ²-catenin function and inhibiting bone morphogenetic protein (BMP) signalling. Thus, a signalling pathway can function at multiple levels to positively regulate a developmental program and can function by abrogating inhibitory pathways. Finally, since RA enhances skeletal muscle progenitor formation, it will be a valuable tool for designing future stem cell therapies.</p

    A comprehensive platform for highly multiplexed mammalian functional genetic screens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide screening in human and mouse cells using RNA interference and open reading frame over-expression libraries is rapidly becoming a viable experimental approach for many research labs. There are a variety of gene expression modulation libraries commercially available, however, detailed and validated protocols as well as the reagents necessary for deconvolving genome-scale gene screens using these libraries are lacking. As a solution, we designed a comprehensive platform for highly multiplexed functional genetic screens in human, mouse and yeast cells using popular, commercially available gene modulation libraries. The Gene Modulation Array Platform (GMAP) is a single microarray-based detection solution for deconvolution of loss and gain-of-function pooled screens.</p> <p>Results</p> <p>Experiments with specially constructed lentiviral-based plasmid pools containing ~78,000 shRNAs demonstrated that the GMAP is capable of deconvolving genome-wide shRNA "dropout" screens. Further experiments with a larger, ~90,000 shRNA pool demonstrate that equivalent results are obtained from plasmid pools and from genomic DNA derived from lentivirus infected cells. Parallel testing of large shRNA pools using GMAP and next-generation sequencing methods revealed that the two methods provide valid and complementary approaches to deconvolution of genome-wide shRNA screens. Additional experiments demonstrated that GMAP is equivalent to similar microarray-based products when used for deconvolution of open reading frame over-expression screens.</p> <p>Conclusion</p> <p>Herein, we demonstrate four major applications for the GMAP resource, including deconvolution of pooled RNAi screens in cells with at least 90,000 distinct shRNAs. We also provide detailed methodologies for pooled shRNA screen readout using GMAP and compare next-generation sequencing to GMAP (i.e. microarray) based deconvolution methods.</p

    Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes

    Get PDF
    Exosomes are nano-sized extracellular vesicles, released from various cells, which can stimulate or repress responses in targets cells. We recently reported that cultured cardiomyocytes are able to release exosomes and that they, in turn, are involved in facilitating events in target cells by alteration of gene expression. We investigated whether external stimuli of the cardiomyocyte might influence the transcriptional content of the released exosomes.Exosomes were isolated from media collected from cultured cardiomyocytes (HL-1) with or without growth factor treatment (TGF-&#x03B2;2 and PDGF-BB), with a series of differential centrifugations, including preparative ultracentrifugation and separation with a sucrose gradient. The exosomes were characterized with dynamic light scattering (DLS), electron microscopy (EM) and Western blot and analyzed with Illumina whole genome microarray gene expression.The exosomes were rounded in shape and had an average size of 50&#x2013;90 nm in diameter with no difference between treatment groups. Analysis of the mRNA content in repeated experiments conclusively revealed 505 transcripts in the control group, 562 in the TGF-&#x03B2;2-treated group and 300 in the PDGF-BB-treated group. Common transcripts (217) were found in all 3 groups.We show that the mode of stimulation of parental cells affects the characteristics of exosomes released. Hence, there is a difference in mRNA content between exosomes derived from cultured cardiomyocytes stimulated, or not stimulated, with growth factors. We also conclude that all exosomes contain a basic package consisting of ribosomal transcripts and mRNAs coding for proteins with functions within the energy supply system. To access the supplementary material to this article, please see Supplementary files under Article Tools online

    In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors

    Get PDF
    Adult human cardiac mesenchymal-like stromal cells (CStC) represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS) in the presence of 5 \ub5M all-trans Retinoic Acid (ATRA), 5 \ub5M Phenyl Butyrate (PB), and 200 \ub5M diethylenetriamine/nitric oxide (DETA/NO), to create a novel epigenetically active cocktail (EpiC). Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and \u3b1-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f) current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors

    Identification and Characterization of a Mef2 Transcriptional Activator in Schistosome Parasites

    Get PDF
    Myocyte enhancer factor 2 protein (Mef2) is an evolutionarily conserved activator of transcription that is critical to induce and control complex processes in myogenesis and neurogenesis in vertebrates and insects, and osteogenesis in vertebrates. In Drosophila, Mef2 null mutants are unable to produce differentiated muscle cells, and in vertebrates, Mef2 mutants are embryonic lethal. Schistosome worms are responsible for over 200 million cases of schistosomiasis globally, but little is known about early development of schistosome parasites after infecting a vertebrate host. Understanding basic schistosome development could be crucial to delineating potential drug targets. Here, we identify and characterize Mef2 from the schistosome worm Schistosoma mansoni (SmMef2). We initially identified SmMef2 as a homolog to the yeast Mef2 homolog, Resistance to Lethality of MKK1P386 overexpression (Rlm1), and we show that SmMef2 is homologous to conserved Mef2 family proteins. Using a genetics approach, we demonstrate that SmMef2 is a transactivator that can induce transcription of four separate heterologous reporter genes by yeast one-hybrid analysis. We also show that Mef2 is expressed during several stages of schistosome development by quantitative PCR and that it can bind to conserved Mef2 DNA consensus binding sequences

    Defining the Earliest Transcriptional Steps of Chondrogenic Progenitor Specification during the Formation of the Digits in the Embryonic Limb

    Get PDF
    The characterization of genes involved in the formation of cartilage is of key importance to improve cell-based cartilage regenerative therapies. Here, we have developed a suitable experimental model to identify precocious chondrogenic events in vivo by inducing an ectopic digit in the developing embryo. In this model, only 12 hr after the implantation of a TgfΞ² bead, in the absence of increased cell proliferation, cartilage forms in undifferentiated interdigital mesoderm and in the course of development, becomes a structurally and morphologically normal digit. Systematic quantitative PCR expression analysis, together with other experimental approaches allowed us to establish 3 successive periods preceding the formation of cartilage. The β€œpre-condensation stage”, occurring within the first 3 hr of treatment, is characterized by the activation of connective tissue identity transcriptional factors (such as Sox9 and Scleraxis) and secreted factors (such as Activin A and the matricellular proteins CCN-1 and CCN-2) and the downregulation of the galectin CG-8. Next, the β€œcondensation stage” is characterized by intense activation of Smad 1/5/8 BMP-signaling and increased expression of extracellular matrix components. During this period, the CCN matricellular proteins promote the expression of extracellular matrix and cell adhesion components. The third period, designated the β€œpre-cartilage period”, precedes the formation of molecularly identifiable cartilage by 2–3 hr and is characterized by the intensification of Sox 9 gene expression, along with the stimulation of other pro-chondrogenic transcription factors, such as HifIa. In summary, this work establishes a temporal hierarchy in the regulation of pro-chondrogenic genes preceding cartilage differentiation and provides new insights into the relative roles of secreted factors and cytoskeletal regulators that direct the first steps of this process in vivo

    The Cardiac Transcription Network Modulated by Gata4, Mef2a, Nkx2.5, Srf, Histone Modifications, and MicroRNAs

    Get PDF
    The transcriptome, as the pool of all transcribed elements in a given cell, is regulated by the interaction between different molecular levels, involving epigenetic, transcriptional, and post-transcriptional mechanisms. However, many previous studies investigated each of these levels individually, and little is known about their interdependency. We present a systems biology study integrating mRNA profiles with DNA–binding events of key cardiac transcription factors (Gata4, Mef2a, Nkx2.5, and Srf), activating histone modifications (H3ac, H4ac, H3K4me2, and H3K4me3), and microRNA profiles obtained in wild-type and RNAi–mediated knockdown. Finally, we confirmed conclusions primarily obtained in cardiomyocyte cell culture in a time-course of cardiac maturation in mouse around birth. We provide insights into the combinatorial regulation by cardiac transcription factors and show that they can partially compensate each other's function. Genes regulated by multiple transcription factors are less likely differentially expressed in RNAi knockdown of one respective factor. In addition to the analysis of the individual transcription factors, we found that histone 3 acetylation correlates with Srf- and Gata4-dependent gene expression and is complementarily reduced in cardiac Srf knockdown. Further, we found that altered microRNA expression in Srf knockdown potentially explains up to 45% of indirect mRNA targets. Considering all three levels of regulation, we present an Srf-centered transcription network providing on a single-gene level insights into the regulatory circuits establishing respective mRNA profiles. In summary, we show the combinatorial contribution of four DNA–binding transcription factors in regulating the cardiac transcriptome and provide evidence that histone modifications and microRNAs modulate their functional consequence. This opens a new perspective to understand heart development and the complexity cardiovascular disorders
    • …
    corecore