43 research outputs found

    on the seismic fragility of pipe rack piping systems considering soil structure interaction

    Get PDF
    Piping systems constitute the most vulnerable component in down- and mid-stream facilities posing immediate threat to human lives, communities financial robustness and environment. Pipe racks present several mechanical and geometrical idiosyncrasies compared to common buildings and the seismic response is governed by the pipework layout. Important design requirements e.g. dynamic interaction between pipelines and supporting structure are commonly overlooked during pipe racks design process and uncertainties relevant to modelling of soil or seismic input are not quantified. In the present work, after reviewing the technical literature and codes, a 3D RC rack was used as a testbed and analysed as coupled and decoupled with a non-seismic code conforming piping system accounting for soil–structure interaction. Incremental dynamic analysis was adopted as an assessment methodology for deriving fragility curves considering ground motions in near- and far-field conditions. It was deduced that the modelling (boundary conditions of pipes) was the most considerable uncertainty since it increased the probability of collapse limit state of structural members from 0 to 59%. It was also demonstrated that soil deformability as well as source conditions altered considerably the dispersion of intensity measure conditional on engineering demand parameter of structural and nonstructural members. The results may be another indication that code provisions should be more normative regarding industrial pipe racks

    Petrochemical Steel Pipe Rack: Critical Assessment of Existing Design Code Provisions and a Case Study

    Get PDF
    Abstract The investigation of the seismic integrity of petrochemical plant steel structures should be commensurable to their importance given the high necessity for human life safety and financial robustness. To date, it is demonstrated in the existing literature that still many grey areas of knowledge exist upon the appropriate application of code provisions on non-building structures design. Indeed, the selection of seismic design parameters such as system performance factors or important classes are still vague aspects, in contrast with those for common building structures, either because of the paucity of information of seismic codes or due to the structural peculiarities that characterise the industrial structures resulting in the difficulty of defining 'all-encompassing' design parameters. The present paper aims at highlighting those parameters considering also a case-study that pertains to a steel pipe rack. The pipe rack is designed and analysed in the linear and nonlinear regime, both statically and dynamically, according to the Italian and European codes. American code provisions are examined as well so as possible inconsistencies might be found. It is demonstrated that the common nonlinear static analysis (pushover analysis) cannot be used to assess the response of the rack and the behaviour factor selection from current standards could be unjustifiable. Also, common engineering demand parameters, e.g. interstorey drift ratio, need further assessment vis-à-vis the response of nonstructural components of which the current design method does not comply with modern methods

    Seismic Assessment of Pipe Racks Accounting for Soil-Structure Interaction

    Get PDF

    The Effect of Atmospheric Corrosion on Steel Structures: A State-of-the-Art and Case-Study

    Get PDF
    Atmospheric corrosion can seriously affect the performance of steel structures over long periods of time; thus, it is essential to evaluate the rate of corrosion and subsequent modification of dynamic properties of a structure over different time periods. Standards and codes represent the general guidelines and suggest general protection techniques to prevent structures from corrosion damage. The available models in the literature propose the thickness reduction method that accounts for the exposure time of structures in corrosive environments. The purpose of this study is to review the existing corrosion models in the literature and report as well as compare their effectiveness in low (C2 level), medium (C3 level) and high (C4 level) corrosivity class in accordance with the ISO standard. Furthermore, the influence of corrosion loss during the lifetime of a structure is studied through a realistic case study model using FEM (finite element method) in both linear and nonlinear regions. The results showed that the corrosion can considerably affect the dynamic characteristics of the structure. For instance, the vibration period rose up to 15% for the C4 class and 100-year lifespan. Additionally, the corroded structure presented higher acceleration and drift demand, and the base reaction forces were reduced up to 60% for the same class and time period.</jats:p

    Membrane and Electrochemical Based Technologies for the Decontamination of Exploitable Streams Produced by Thermochemical Processing of Contaminated Biomass

    Get PDF
    Phytoremediation is an emerging concept for contaminated soil restoration via the use of resilient plants that can absorb soil contaminants. The harvested contaminated biomass can be thermochemically converted to energy carriers/chemicals, linking soil decontamination with biomass-to-energy and aligning with circular economy principles. Two thermochemical conversion steps of contaminated biomass, both used for contaminated biomass treatment/exploitation, are considered: Supercritical Water Gasification and Fast Pyrolysis. For the former, the vast majority of contaminants are transferred into liquid and gaseous effluents, and thus the application of purification steps is necessary prior to further processing. In Fast Pyrolysis, contaminants are mainly retained in the solid phase, but a part appears in the liquid phase due to fine solids entrainment. Contaminants include heavy metals, particulate matter, and hydrogen sulfide. The purified streams allow the in-process re-use of water for the Super Critical Water Gasification, the sulfur-free catalytic conversion of the fuel-rich gaseous stream of the same process into liquid fuels and recovery of an exploitable bio-oil rich stream from the Fast Pyrolysis. Considering the fundamental importance of purification/decontamination to exploit the aforementioned streams in an integrated context, a review of available such technologies is conducted, and options are shortlisted. Technologies of choice include polymeric-based membrane gas absorption for desulfurization, electrooxidation/electrocoagulation for the liquid product of Supercritical Water Gasification and microfiltration via ceramic membranes for fine solids removal from the Fast Pyrolysis bio-oil. Challenges, risks, and suitable strategies to implement these options in the context of biomass-to-energy conversion are discussed and recommendations are made

    Study of Oxidation and Combustion Characteristics of Iron Nanoparticles under Idealized and Enginelike Conditions

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Energy Fuels, copyright © American Chemical Society after peer review and technical editing by the publisher.[EN] The present work includes findings from proof-of-principle feasibility studies on iron nanopowder combustion under idealized, enginelike, and real engine conditions. The study was conducted under the scope of recent interest in metallic nanoparticles as alternative fuels for internal combustion engines. More specifically, Fe nanoparticles with different morphologies and average primary particle sizes ranging from 25 to 85 nm were studied with respect to their oxidation characteristics via thermogravimetric analysis as well as in customized shock tube, constant-volume vessel, and compression-ignition (CI) engine configurations. Combusted powder samples were in all cases examined via in situ and ex situ techniques for the identification of combustion products and their morphologies. The findings facilitated the determination of the main phenomena involved during oxidation. The results verified that combustion of Fe nanoparticles in a slightly modified CI engine is feasible, albeit with various technological challenges related to ignition and scavenging that inhibit combustion quality.The authors thank the European Commission for partial funding of this work through the Project “COMETNANO” (FP7-NMP4-SL-2009-229063).Mandilas, C.; Karagiannakis, G.; Konstandopoulos, AG.; Beatrice, C.; Lazzaro, M.; Di Blasio, G.; Molina, S.... (2016). Study of Oxidation and Combustion Characteristics of Iron Nanoparticles under Idealized and Enginelike Conditions. Energy and Fuels. 30(5):4318-4330. https://doi.org/10.1021/acs.energyfuels.6b00121S4318433030

    SEISMIC RISK AND RESILIENCE ASSESSMENT OF INDUSTRIAL FACILITIES: CASE STUDY ON A BLACK CARBON PLANT

    No full text
    This paper deals with state of the art risk and resilience calculations for industrial plants. Resilience is a top priority issue on the agenda of societies due to climate change and the all-time demand for human life safety and financial robustness. Industrial plants are highly complex systems containing a considerable number of equipment such as steel storage tanks, pipe rack-piping systems, and other installations. Loss Of Containment (LOC) scenarios triggered by past earthquakes due to failure on critical components were followed by severe repercussions on the community, long recovery times and great economic losses. Hence, facility planners and emergency managers should be aware of possible seismic damages and should have already established recovery plans to maximize the resilience and minimize the losses. Seismic risk assessment is the first step of resilience calculations, as it establishes possible damage scenarios. In order to have an accurate risk analysis, the plant equipment vulnerability must be assessed; this is made feasible either from fragility databases in the literature that refer to customized equipment or through numerical calculations. Two different approaches to fragility assessment will be discussed in this paper: (i) code-based Fragility Curves (FCs); and (ii) fragility curves based on numerical models. A carbon black process plant is used as a case study in order to display the influence of various fragility curve realizations taking their effects on risk and resilience calculations into account. Additionally, a new way of representing the total resilience of industrial installations is proposed. More precisely, all possible scenarios will be endowed with their weighted recovery curves (according to their probability of occurrence) and summed together. The result is a concise graph that can help stakeholders to identify critical plant equipment and make decisions on seismic mitigation strategies for plant safety and efficiency. Finally, possible mitigation strategies, like structural health monitoring and metamaterial-based seismic shields are addressed, in order to show how future developments may enhance plant resilience. The work presented hereafter represents a highly condensed application of the research done during the XP-RESILIENCE project, while more detailed information is available on the project website https://r.unitn.it/en/dicam/xp-resilience

    Recent Advances in Cirrhotic Cardiomyopathy

    No full text
    Cirrhotic cardiomyopathy, a cardiac dysfunction presented in patients with cirrhosis, represents a recently recognized clinical entity. It is characterized by altered diastolic relaxation, impaired contractility, and electrophysiological abnormalities, in particular prolongation of the QT interval. Several mechanisms seem to be involved in the pathogenesis of cirrhotic cardiomyopathy, including impaired function of beta-receptors, altered transmembrane currents, and overproduction of cardiodepressant factors, like nitric oxide, tumor necrosis factor alpha, and endogenous cannabinoids. Diastolic dysfunction is the first manifestation of cirrhotic cardiomyopathy and reflects the increased stiffness of the cardiac mass, which leads to delayed left ventricular filling. On the other hand, systolic incompetence is presented later, is usually unmasked during pharmacological or physical stress, and predisposes to the development of hepatorenal syndrome. The prolongation of QT is found in about 50 % of cirrhotic patients, but rarely leads to fatal arrhythmias. Cirrhotics with blunted cardiac function seem to have poorer survival rates compared to those without, and the risk is particularly increased during the insertion of transjugular intrahepatic portosystemic shunt or liver transplantation. Till now, there is no specific treatment for themanagement of cirrhotic cardiomyopathy. New agents, targeting to its pathogenetical mechanisms, may play some role as future therapeutic options
    corecore