241 research outputs found

    Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring

    Get PDF
    1. High-throughput environmental sensing technologies are increasingly central to global monitoring of the ecological impacts of human activities. In particular, the recent boom in passive acoustic sensors has provided efficient, noninvasive, and taxonomically broad means to study wildlife populations and communities, and monitor their responses to environmental change. However, until recently, tech-nological costs and constraints have largely confined research in passive acoustic monitoring (PAM) to a handful of taxonomic groups (e.g., bats, cetaceans, birds), often in relatively small-scale, proof-of-concept studies.2. The arrival of low-cost, open-source sensors is now rapidly expanding access to PAM technologies, making it vital to evaluate where these tools can contribute to broader efforts in ecology and biodiversity research. Here, we synthesise and critically assess the current emerging opportunities and challenges for PAM for ecological assessment and monitoring of both species populations and communities.3. We show that terrestrial and marine PAM applications are advancing rapidly, fa-cilitated by emerging sensor hardware, the application of machine learning inno-vations to automated wildlife call identification, and work towards developing acoustic biodiversity indicators. However, the broader scope of PAM research remains constrained by limited availability of reference sound libraries and open-source audio processing tools, especially for the tropics, and lack of clarity around the accuracy, transferability and limitations of many analytical methods.4. In order to improve possibilities for PAM globally, we emphasise the need for col-laborative work to develop standardised survey and analysis protocols, publicly archived sound libraries, multiyear audio datasets, and a more robust theoretical and analytical framework for monitoring vocalising animal communities

    Minkowski Tensors of Anisotropic Spatial Structure

    Get PDF
    This article describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the so-called Minkowski tensors. Minkowski tensors are generalisations of the well-known scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant for example for elastic moduli or permeability of microstructured materials. Here we derive explicit linear-time algorithms to compute these tensorial measures for three-dimensional shapes. These apply to representations of any object that can be represented by a triangulation of its bounding surface; their application is illustrated for the polyhedral Voronoi cellular complexes of jammed sphere configurations, and for triangulations of a biopolymer fibre network obtained by confocal microscopy. The article further bridges the substantial notational and conceptual gap between the different but equivalent approaches to scalar or tensorial Minkowski functionals in mathematics and in physics, hence making the mathematical measure theoretic method more readily accessible for future application in the physical sciences

    Minkowski tensors and local structure metrics: Amorphous and crystalline sphere packings

    Get PDF
    Robust and sensitive tools to characterise local structure are essential for investigations of granular or particulate matter. Often local structure metrics derived from the bond network are used for this purpose, in particular Steinhardt's bond-orientational order parameters ql . Here we discuss an alternative method, based on the robust characterisation of the shape of the particles' Voronoi cells, by Minkowski tensors and derived anisotropy measures. We have successfully applied these metrics to quantify structural changes and the onset of crystallisation in random sphere packs. Here we specifically discuss the expectation values of these metrics for simple crystalline unimodal packings of spheres, consisting of single spheres on the points of a Bravais lattice. These data provide an important reference for the discussion of anisotropy values of disordered structures that are typically of relevance in granular systems. This analysis demonstrates that, at least for sufficiently high packing fractions above φ > 0.61, crystalline sphere packs exist whose Voronoi cells are more anisotropic with respect to a volumetric moment tensor than the average value of Voronoi cell anisotropy in random sphere packs

    Minkowski tensors and local structure metrics: Amorphous and crystalline sphere packings

    No full text
    Robust and sensitive tools to characterise local structure are essential for investigations of granular or particulate matter. Often local structure metrics derived from the bond network are used for this purpose, in particular Steinhardt's bond-orientational order parameters ql . Here we discuss an alternative method, based on the robust characterisation of the shape of the particles' Voronoi cells, by Minkowski tensors and derived anisotropy measures. We have successfully applied these metrics to quantify structural changes and the onset of crystallisation in random sphere packs. Here we specifically discuss the expectation values of these metrics for simple crystalline unimodal packings of spheres, consisting of single spheres on the points of a Bravais lattice. These data provide an important reference for the discussion of anisotropy values of disordered structures that are typically of relevance in granular systems. This analysis demonstrates that, at least for sufficiently high packing fractions above φ > 0.61, crystalline sphere packs exist whose Voronoi cells are more anisotropic with respect to a volumetric moment tensor than the average value of Voronoi cell anisotropy in random sphere packs

    Cell shape analysis of random tessellations based on Minkowski tensors

    Full text link
    To which degree are shape indices of individual cells of a tessellation characteristic for the stochastic process that generates them? Within the context of stochastic geometry and the physics of disordered materials, this corresponds to the question of relationships between different stochastic models. In the context of image analysis of synthetic and biological materials, this question is central to the problem of inferring information about formation processes from spatial measurements of resulting random structures. We address this question by a theory-based simulation study of shape indices derived from Minkowski tensors for a variety of tessellation models. We focus on the relationship between two indices: an isoperimetric ratio of the empirical averages of cell volume and area and the cell elongation quantified by eigenvalue ratios of interfacial Minkowski tensors. Simulation data for these quantities, as well as for distributions thereof and for correlations of cell shape and volume, are presented for Voronoi mosaics of the Poisson point process, determinantal and permanental point processes, and Gibbs hard-core and random sequential absorption processes as well as for Laguerre tessellations of polydisperse spheres and STIT- and Poisson hyperplane tessellations. These data are complemented by mechanically stable crystalline sphere and disordered ellipsoid packings and area-minimising foam models. We find that shape indices of individual cells are not sufficient to unambiguously identify the generating process even amongst this limited set of processes. However, we identify significant differences of the shape indices between many of these tessellation models. Given a realization of a tessellation, these shape indices can narrow the choice of possible generating processes, providing a powerful tool which can be further strengthened by density-resolved volume-shape correlations.Comment: Chapter of the forthcoming book "Tensor Valuations and their Applications in Stochastic Geometry and Imaging" in Lecture Notes in Mathematics edited by Markus Kiderlen and Eva B. Vedel Jense

    Anomaly Cancelation in Field Theory and F-theory on a Circle

    Full text link
    We study the manifestation of local gauge anomalies of four- and six-dimensional field theories in the lower-dimensional Kaluza-Klein theory obtained after circle compactification. We identify a convenient set of transformations acting on the whole tower of massless and massive states and investigate their action on the low-energy effective theories in the Coulomb branch. The maps employ higher-dimensional large gauge transformations and precisely yield the anomaly cancelation conditions when acting on the one-loop induced Chern-Simons terms in the three- and five-dimensional effective theory. The arising symmetries are argued to play a key role in the study of the M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact that all fully resolved F-theory geometries inducing multiple Abelian gauge groups or non-Abelian groups admit a certain set of symmetries, we are able to generally show the cancelation of pure Abelian or pure non-Abelian anomalies in these models.Comment: 48 pages, 2 figures; v2: typos corrected, comments on circle fluxes adde

    Programming moir\'e patterns in 2D materials by bending

    Full text link
    Moir\'e superlattices in twisted two-dimensional materials have generated tremendous excitement as a platform for achieving quantum properties on demand. However, the moir\'e pattern is highly sensitive to the interlayer atomic registry, and current assembly techniques suffer from imprecise control of the average twist angle, spatial inhomogeneity in the local twist angle, and distortions due to random strain. Here, we demonstrate a new way to manipulate the moir\'e patterns in hetero- and homo-bilayers through in-plane bending of monolayer ribbons, using the tip of an atomic force microscope. This technique achieves continuous variation of twist angles with improved twist-angle homogeneity and reduced random strain, resulting in moir\'e patterns with highly tunable wavelength and ultra-low disorder. Our results pave the way for detailed studies of ultra-low disorder moir\'e systems and the realization of precise strain-engineered devices

    Improving estimates of environmental change using multilevel regression models of Ellenberg indicator values

    Get PDF
    Ellenberg indicator values (EIVs) are a widely used metric in plant ecology comprising a semi-quantitative description of species‘ ecological requirements. Typically, point estimates of mean EIV scores are compared over space or time to infer differences in the environmental conditions structuring plant communities – particularly in resurvey studies where no historical environmental data are available. However, the use of point estimates as a basis for inference does not take into account variance among species EIVs within sampled plots, and gives equal weighting to means calculated from plots with differing numbers of species. Traditional methods are also vulnerable to inaccurate estimates where only incomplete species lists are available. We present a set of multilevel (hierarchical) models – fitted with and without group-level predictors (for eg. habitat type) – to improve precision and accuracy of plot mean EIV scores, and to provide more reliable inference on changing environmental conditions over spatial and temporal gradients in resurvey studies. We compare multilevel model performance to GLMM’s fitted to point estimates of mean EIVs. We also test the reliability of this method to improve inferences with incomplete species lists in some or all sample plots. Hierarchical modelling led to more accurate and precise estimates of plot-level differences in mean EIV scores between time-periods, particularly for datasets with incomplete records of species occurrence. Furthermore, hierarchical models revealed directional environmental change within ecological habitat types, which less precise estimates from GLMM’s of raw mean EIVs were inadequate to detect. The ability to compute separate residual variance and adjusted R^2 parameters for plot mean EIVs and temporal differences in plot mean EIVs in multilevel models also allowed us to uncover a prominent role of hydrological differences as a driver of community compositional change in our case study, which traditional use of EIVs would fail to reveal. Assessing environmental change underlying ecological communities is a vital issue in the face of accelerating anthropogenic change. We have demonstrated that multilevel modelling of EIVs allows for a nuanced estimation of such from plant assemblage data changes at local scales and beyond, leading to a better understanding of temporal dynamics of ecosystems. Further, the ability of these methods to perform well with missing data should increase the total set of historical data which can be used to this end
    • 

    corecore