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Abstract
1.	 Ellenberg	indicator	values	(EIVs)	are	a	widely	used	metric	in	plant	ecology	com-
prising	 a	 semi-quantitative	 description	 of	 species’	 ecological	 requirements.	
Typically,	point	estimates	of	mean	EIV	scores	are	compared	over	space	or	time	to	
infer	differences	in	the	environmental	conditions	structuring	plant	communities—
particularly	in	resurvey	studies	where	no	historical	environmental	data	are	avail-
able.	However,	the	use	of	point	estimates	as	a	basis	for	inference	does	not	take	
into	account	variance	among	species	EIVs	within	sampled	plots	and	gives	equal	
weighting	 to	 means	 calculated	 from	 plots	 with	 differing	 numbers	 of	 species.	
Traditional	methods	are	also	vulnerable	 to	 inaccurate	estimates	where	only	 in-
complete	species	lists	are	available.

2.	 We	 present	 a	 set	 of	 multilevel	 (hierarchical)	 models—fitted	 with	 and	 without	
group-level	predictors	(e.g.,	habitat	type)—to	improve	precision	and	accuracy	of	
plot	mean	EIV	scores	and	to	provide	more	reliable	inference	on	changing	environ-
mental	 conditions	 over	 spatial	 and	 temporal	 gradients	 in	 resurvey	 studies.	We	
compare	multilevel	model	 performance	 to	GLMMs	 fitted	 to	point	 estimates	of	
mean	EIVs.	We	also	test	the	reliability	of	this	method	to	improve	inferences	with	
incomplete	species	lists	in	some	or	all	sample	plots.

3.	 Hierarchical	modeling	led	to	more	accurate	and	precise	estimates	of	plot-level	dif-
ferences	in	mean	EIV	scores	between	time-periods,	particularly	for	datasets	with	
incomplete	records	of	species	occurrence.	Furthermore,	hierarchical	models	re-
vealed	directional	environmental	 change	within	ecological	habitat	 types,	which	
less	precise	estimates	from	GLMMs	of	raw	mean	EIVs	were	inadequate	to	detect.	
The	ability	to	compute	separate	residual	variance	and	adjusted	R2	parameters	for	
plot	mean	EIVs	and	temporal	differences	in	plot	mean	EIVs	in	multilevel	models	
also	allowed	us	to	uncover	a	prominent	role	of	hydrological	differences	as	a	driver	
of	community	compositional	change	 in	our	case	study,	which	 traditional	use	of	
EIVs	would	fail	to	reveal.

4.	 Assessing	environmental	change	underlying	ecological	communities	is	a	vital	issue	
in	 the	 face	 of	 accelerating	 anthropogenic	 change.	We	have	 demonstrated	 that	
multilevel	modeling	of	EIVs	allows	for	a	nuanced	estimation	of	such	from	plant	
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1  | INTRODUC TION

Resurvey	studies,	where	communities	are	resampled	after	years	or	
decades	have	elapsed,	are	becoming	 increasingly	common	 in	ecol-
ogy	due	to	interest	in	how	ecosystems	are	responding	to	global	en-
vironmental	change	(e.g.,	Diaz,	Keith,	Bullock,	Hooftman,	&	Newton,	
2013;	 Krause,	 Culmsee,	 Wesche,	 &	 Leuschner,	 2015).	 However,	
contemporaneous	environmental	data	 alongside	historical	 data	on	
species	 records	 are	 often	 lacking,	 which	 can	 hamper	 attempts	 to	
identify	 drivers	 of	 community	 change.	 As	 one	 solution,	 Ellenberg	
Indicator	 Values	 (EIVs)	 are	 widely	 used	 to	 infer	 environmental	
change	over	time	where	no	data	are	available	for	abiotic	conditions	
(Häring,	 Reger,	 Ewald,	 Hothorn,	 &	 Schröder,	 2014;	 Krause	 et	al.,	
2015;	 McGovern,	 Evans,	 Dennis,	 Walmsley,	 &	 McDonald,	 2011;	
Newton	 et	al.,	 2012;	 Prach,	 1993;	 Wesche,	 Krause,	 Culmsee,	 &	
Leuschner,	2012).	EIVs	score	plant	species	on	an	ordinal	scale	based	
on	estimated	optimal	environmental	conditions	for	moisture,	 light,	
soil	nutrient	levels,	reaction	(pH),	and	salt	tolerance	(F,	L,	N,	R,	and	S	
respectively)	(Ellenberg,	1988;	Hill,	Preston,	&	Roy,	2004).	Typically,	
ecologists	compare	mean	EIV	scores	of	plants	sampled	from	stands	
of	vegetation	 to	 infer	differences	 in	abiotic	conditions	 (Diekmann,	
2003).	However,	 use	of	point	 estimate	plot	mean	EIVs	 fails	 to	 ac-
count	 for	 variation	 in	 EIV	 scores	 of	 plant	 species	 within	 sample	
plots,	which	we	hypothesize	could	 improve	accuracy	of	 inferences	
if	included.	Furthermore,	incomplete	species	occurrence	records	for	
some	or	all	plots	may	lead	to	inaccurate	estimates	of	plot	means	and	
thus	poor	inference	of	environmental	changes	over	time.

The	population	parameter	one	attempts	to	estimate	when	calcu-
lating	a	mean	EIV	score	from	plant	occurrence	records—for	example,	
describing	soil	reaction	(EIV	R)—is	the	mean	EIV	score	for	all	plant	
species	able	to	establish	at	this	plot	given	the	soil	pH,	all	other	things	
being	equal	(Dupré,	2000;	Ellenberg,	1988).	However,	as	well	as	en-
vironmental	 filtering	 for	 pH,	 a	myriad	 of	 factors,	 including	 abiotic	
conditions	and	interactions	with	other	species	present	in	the	com-
munity,	will	affect	the	probability	of	a	particular	species	establishing	
a	 local	population	 (Grime,	1977;	Keddy,	1992;	Vellend,	2016).	This	
complex	filtering	process	leads	to	the	diverse	plant	assemblages	we	
see	in	nature,	which	in	turn	lead	to	variation	in	EIV	scores	of	species	
within	and	between	plots.

Environmental	 heterogeneity	 is	 an	 important	 factor	 in	 plant	
ecology	studies	generally	 (e.g.,	Maslov,	1989),	and	by	failing	to	ac-
count	 for	 different	 levels	 of	 variation	within	 a	 system,	 traditional	

methods	 discard	 much	 information,	 which	 may	 result	 in	 over-		 or	
underestimation	of	the	extent	of	change	over	time	(Gelman	&	Hill,	
2006).	Figure	1	depicts	three	distinct	levels	of	variation	that	can	be	
identified	within	a	typical	ecological	study	estimating	environmen-
tal	change	using	EIVs:	(a)	variation	among	EIV	scores	of	species	re-
corded	within	sampled	plots	(σspecies);	(b)	variation	between	plots	in	
mean	EIV	scores	(σα);	and	(c)	variation	in	between	time-	period	differ-
ences	in	plot	mean	EIVs	as	environmental	conditions	change	differ-
entially	across	a	landscape	over	time	(σβ).	Traditional	methods	using	
point	estimates	of	mean	EIVs	from	sampled	plots	(the	x̄’s	in	Figure	1)	
to	infer	differences	between	groups	of	plots	in	space	or	time—either	
broken	down	by	a	grouping	factor	(e.g.,	habitat	type),	or	on	average	
across	all	sample	plots—fail	to	incorporate	variation	within	plots	in	
species	EIV	scores	(σspecies).

The	suitability	of	hierarchical	modeling	to	account	for	structure	
and	 variability	 in	 ecological	 systems	 is	 well	 established	 (Cressie,	
Calder,	 Clark,	 Hoef,	 &	Wikle,	 2009;	 Kéry	&	 Royle,	 2016;	 Royle	 &	
Dorazio,	2008),	and	 this	approach	provides	an	 ideal	 framework	 to	
account	fully	for	the	structure	and	variability	identified	in	Figure	1.	
Instead	of	using	point	estimates	of	mean	EIVs,	data	enter	the	model	
as	species-	specific	EIV	scores,	and	inferred	plot	means—with	all	of	
their	 associated	 uncertainty—are	 estimated	 and	 used	 at	 a	 higher	
level	within	the	model	to	infer	differences	between	groups	of	plots	in	
space	and	time	(McElreath,	2016).	In	this	way,	information	is	shared	
between	plots,	with	mean	EIV	estimates	augmented	through	partial	
pooling—that	is,	plot-	level	estimates	being	pulled	towards	the	over-
all	mean	to	an	extent	dependant	on	the	number	of	species	a	mean	
estimate	 is	composed	of,	and	 the	variability	of	estimates	between	
plots	 (Gelman	&	Hill,	2006).	More	fully	accounting	for	uncertainty	
in	this	way	should	lead	to	more	reliable	estimates	of	individual	plot	
mean	values,	and	of	differences	between	groups	of	plots	 in	space	
and	 time	 (Gelman	 &	 Hill,	 2006).	 Furthermore,	 because	 estimates	
are	pooled	according	to	shared	information	content,	differences	be-
tween	any	pair	or	combination	of	individual	plots	or	habitats	in	the	
system	can	be	inferred	without	having	to	contend	with	the	issue	of	
multiple	comparisons,	which	should	provide	more	power	to	detect	
change	over	time	in	conventional	null	hypothesis	testing	frameworks	
(Gelman,	Hill,	&	Yajima,	2012).

A	multilevel	 (hierarchical)	modeling	 approach	may	 also	help	 to	
improve	estimates	of	plot	mean	EIVs	in	instances	where	lists	of	re-
corded	species	are	incomplete	for	some	or	all	plots.	Incomplete	sam-
pling	 is	 a	 common	 nuisance	 in	 ecological	 studies	 as	 some	 species	

assemblage	data	changes	at	 local	 scales	and	beyond,	 leading	 to	a	better	under-
standing	of	temporal	dynamics	of	ecosystems.	Further,	the	ability	of	these	meth-
ods	to	perform	well	with	missing	data	should	 increase	the	total	set	of	historical	
data	which	can	be	used	to	this	end.

K E Y W O R D S
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are	more	difficult	to	detect	than	others,	and	ease	of	detection	may	
vary	depending	on	the	time	of	year	a	particular	plot	is	sampled,	and	
among	 species	 (Chen,	 Kéry,	 Plattner,	Ma,	 &	 Gardner,	 2013;	 Kéry,	
2004;	Kéry	&	Gregg,	2003).	This	issue	may	be	further	compounded	
if	recorders	with	differing	botanical	skills	sample	different	plots,	or	
in	resurvey	studies	where	it	can	be	difficult	to	confirm	the	complete-
ness	 of	 records,	 and	where	 differing	 sampling	methods	may	 have	
been	used.	As	long	as	data	are	not	missing	systematically	across	all	
plots,	multilevel	modeling	should	improve	mean	estimates	for	plots	
with	missing	data—and	any	inference	based	on	these	estimates—by	
pooling	information	across	plots.

The	aim	of	this	study	was	to	demonstrate	how	hierarchical	mod-
eling	can	lead	to	higher	discriminatory	power	than	traditional	meth-
ods	when	 using	 EIVs	 to	 assess	 environmental	 changes	 underlying	
plant	 communities.	This	 is	 achieved	by	 accounting	 for	uncertainty	
at	 all	 levels	 of	 the	 ecological	 system	 and	 by	 explicitly	 identifying	
and	estimating	components	of	temporal	and	spatial	variation	in	plot	
mean	EIVs.

We	demonstrate	the	utility	of	this	method	in	studies	with	both	
complete	 and	 incomplete	 plot	 records	 for	 species	 occurrence	 by	
fitting	models	to	a	real	resurvey	dataset.	The	models	describe	two	
scenarios:	(a)	A	set	of	plots	across	a	landscape,	resampled	in	a	sec-
ond	time-	period,	assumed	to	be	replicates	of	a	similar	habitat	type;	

and	(b)	a	similar	set	of	plots	sampled	in	two	time-	periods,	but	in	this	
case	groups	of	plots	differ	by	some	grouping	factor	(e.g.,	habitat	type	
in	 our	 case	 study).	We	 ask:	 (a)	Do	 inferences	 on	 changes	 in	 envi-
ronmental	conditions	in	space	and	between	time-	periods	differ	be-
tween	hierarchical	models	of	EIVs	with	a	full	multilevel	structure	and	
models	using	point	estimates	of	raw	mean	EIVs	from	sampled	plots	
as	data,	to	an	extent	that	will	effect	conclusions	about	change	in	the	
system?	 (b)	 Do	 hierarchical	 models	 improve	 mean	 estimates—and	
consequently	inferences	on	temporal	differences	based	on	these	es-
timates—for	datasets	where	the	full	cohort	of	species	is	not	recorded	
in	all	sampled	plots?	We	provide	code	in	the	Supporting	Information	
Data	S1	to	fit	the	models	in	R	and	Jags.

2  | METHODS

2.1 | Data

All	models	were	 fitted	 to	 a	 real	 ecological	 dataset	 for	 EIVs	 de-
scribing	 moisture,	 light,	 soil	 nutrient	 levels,	 reaction	 (pH),	 and	
salt	tolerance	(F,	L,	N,	R,	and	S,	respectively)	from	the	PLANTATT	
dataset	which	provides	EIVs	adjusted	for	use	in	the	UK	and	Ireland	
(Hill	 et	al.,	 2004).	 Historical	 data	 were	 collected	 by	 Cyril	 Diver	

F IGURE  1 Typical	spatiotemporal	sampling	structure	of	a	resurvey	study	where	Ellenberg	Indicator	Values	(EIVs)	are	used	to	infer	
environmental	differences	underlying	plant	assemblages.	Each	color/number	combination	represents	the	EIV	score	of	a	specific	plant	
species.	In	this	example,	plots	are	sampled	within	two	separate	ecological	habitat	types,	and	plant	species	occurrences	are	recorded	for	all	
plots	in	two	separate	time-	periods.	The	σ	values	denote	components	of	variation	(a)	in	EIVs	among	species	within	sampled	plots	(σspecies),	(b)	
in	mean	EIVs	between	plots	(σα),	and	(c)	in	differences	in	plot	mean	EIVs	between	time-	periods	(σβ).	Methods	using	preaveraged	mean	values	
(x̄’s)	as	a	starting	point	for	inference	fail	to	account	for	σspecies,	and	as	a	result	can	lead	to	less	reliable	plot	mean	estimates	and	inferences	
across	the	wider	landscape	and	between	time-	periods
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and	 contemporaries	 in	 the	 1930s	 from	 the	 Studland	 Peninsula,	
Dorset,	UK	(Lat:	50.66,	Lon:	−1.9)	(Diver,	1938;	Good,	1935).	The	
Peninsula	consists	of	a	habitat	mosaic	 (~3	km2)	characterised	as	
dune,	dune	heath,	tertiary	heath,	woodland,	harbour	shore,	marsh,	
and	 edge	 aquatic	 plant	 assemblages.	 Diver	 and	 colleagues	 re-
corded	lists	of	species	occurrences	in	74	sample	plots	(“compart-
ments”)	which	varied	in	size	and	shape	(size	in	m2:	min	=	899.98,	
max	=	200764.4,	 mean	=	44452.52),	 and	 were	 based	 on	 the	
topographical	 properties	 and	 local	 ecological	 characteristics	 of	
Studland	(Diver,	1938).	The	sampling	compartments	of	Studland	
fall	 somewhere	 between	 Permanent	 and	 Quasi-	permanent	 cat-
egories	 by	 the	 framework	 presented	 in	 Kapfer	 et	al.,	 2017,	 as	
though	they	were	relocated	using	various	physical	indicators	and	
detailed	ordinance	survey	maps,	the	precise	boundaries	between	
them	may	not	always	be	 in	the	exact	same	positions	for	histori-
cal	 and	 contemporary	 sampling.	 The	National	 Trust	 resurveyed	
the	 area	 between	 2013	 and	 2015	 in	 a	 citizen	 science	 initiative	
coined	 “The	Cyril	Diver	 Project”	 following	Divers’	 original	 sam-
pling	 plots.	 (https://www.nationaltrust.org.uk/studland-beach/
features/the-cyril-diver-project).	 Both	 sampling	 and	 resampling	
efforts	 aimed	 to	 record	 all	 species	 present	 in	 their	 respective	
time-	periods	by	repeatedly	visiting	plots	throughout	the	year	and	
scouring	 them	 carefully	 in	 teams	 for	 the	duration	of	 respective	
study	periods.	The	number	of	species	in	each	sample	in	each	plot	
time-	period,	area,	and	coordinates	of	sample	plots	 is	detailed	 in	
Supporting	Information	Data	S2.

2.2 | Models

2.2.1 | Estimating environmental change over time 
in resurvey studies

The	first	scenario	we	consider	is	one	in	which	we	estimate	between	
time-	period	differences	 in	mean	EIVs	 for	 a	 resurvey	 study,	where	
sample	 plots	 are	 considered	 replicates	 of	 similar,	 homogenous	
stands	of	vegetation	in	the	same	type	of	habitat.	As	such,	model	M1	
below	is	equivalent	to	compiling	a	series	of	t-	tests,	one	for	each	plot,	
to	estimate	differences	in	mean	EIV	scores	at	plot	level—although	to	
use	it	for	statistical	testing	in	this	manner	would	require	major	cor-
rections	for	multiple	testing.	We	formulate	this	simple	linear	model	
to	emphasize	 fully	 the	progression	from	fixed	effects	models	with	
no-	pooling,	 to	 those	with	partial	 pooling	under	 a	multilevel	 struc-
ture—and	to	use	as	a	baseline	against	which	to	compare	plot	mean	
estimates	 from	 hierarchical	 models.	 The	 appropriateness	 of	 using	
mean	values	of	ordinal	EIVs	and	means	of	ordinal	values	more	gener-
ally	has	been	widely	discussed	in	the	literature	and	is	not	the	topic	
of	this	paper;	however,	we	agree	that	it	has	proven	a	useful	method	
in	applied	plant	ecology	and	 should	continue	 to	be	 so	 (Diekmann,	
2003;	Pasta,	2009).

yi	 is	 the	EIV	score	for	species	 i	 in	plot	 j,	and	σspecies	 is	 the	esti-
mated	residual	variance	for	EIV	scores	of	n	species	within	sampled	
plots.	In	this	no-	pooling	model,	the	αj	values	are	the	plot	means	from	
time-	period	1,	and	each	βj	parameter	is	an	estimate	of	the	difference	
in	mean	EIV	in	compartment	j	between	time-	periods	1	and	2.	xi	is	the	
binary	(0,1)	predictor	for	the	time-	period	that	species	yi	was	sampled	
in.

To	move	 from	 “no-	pooling”	 to	 hierarchical	 models,	 we	 allow	
the	αj ’s	and	βj ’s	from	model	M1	to	share	information	through	par-
tial	pooling,	changing	them	from	fixed	to	random	effects.	As	such,	
model	M2	below	can	be	viewed	as	a	type	of	mixed	effects	model	
which	allows	us	to	use	more	conservative	estimates	of	plot-	level	
between	 time-	period	differences	 (slopes)	by	 sharing	 information	
content	across	plots	and	thus	arrive	at	a	more	accurate	estimate	
of	overall	change.

Slope	and	intercept	parameters	are	constrained	to	come	from	
bivariate	 normal	 distribution	 (MVN)	with	mean	 vector	 (�� ,�� )	 to	
account	for	correlation	between	them	(Gelman	&	Hill,	2006).	The	
covariance	matrix	is	defined	by	the	variance	in	plot	intercepts	(��) 
and	slopes	(�� ),	 and	 the	covariance	between	 the	 two	sets	of	pa-
rameters	(��2

�
�2
�
),	where	ρ	 is	 the	correlation	coefficient.	Allowing	

information	on	temporal	differences	across	plots	to	be	shared	in	
this	way	makes	sense	particularly	if	the	sampled	plots	come	from	
a	spatial	area	within	which	we	expect	abiotic	drivers	of	change	to	
be	linked.

2.2.2 | Inferences between plots differing by a 
grouping factor

Sampled	plots	may	differ	by	 some	categorical	 factor	 (e.g.,	Habitat	
type,	 grazing	 regime,	etc.).	We	can	extend	model	M2	 to	 include	a	
group-	level	 predictor	 within	 the	 sub-	models	 of	 αj’s	 and	 βj’s.	 Thus	
plot-	level	estimates	in	model	M3	below	are	improved	when	groups	
of	plot	differ	by	habitat,	as	now	the	estimates	are	pooled	toward	the	
habitat-	level	mean	value	rather	than	the	mean	across	all	plots.	M3	
also	 allows	 us	 to	 estimate	 differences	 in	mean	 changes	 at	 habitat	
level.

In	hierarchical	model	M3,	the	data	(yi)	still	enter	the	model	at	
the	level	of	plant	species	within	plots,	and	the	plot	intercepts	and	
slopes	are	still	constrained	to	come	from	a	multivariate	normal	dis-
tribution.	Here,	however,	the	means	of	this	distribution	(��[k])	and	

M1

yi∼N(�j[i]+�j[i]xi,�species), for i=1,… ,n

M2

yi∼N(�j[i]+�j[i]xi,�species), for i=1,… ,n

(�j,�j)∼MVN((�� ,�� ),(�� ,�� ,��
2
�
�2
�
)), for j=1,… ,j

M3

yi∼N(�j[i]+�j[i]xi,�species), for i=1,… ,n

(�j,�j)∼MVN(��[k],��[k]),(�� ,�� ,��
2
�
�2
�
)), for j=1,… ,j

https://www.nationaltrust.org.uk/studland-beach/features/the-cyril-diver-project
https://www.nationaltrust.org.uk/studland-beach/features/the-cyril-diver-project
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(��[k])	take	on	a	different	value	for	each	of	k	groups	(habitat	types	
in	our	case	study).	σα	 and	σβ	now	estimate	variation	 in	plot-	level	
intercepts	and	slopes	 respectively,	after	 taking	habitat	 type	 into	
account.

Model	 M3	 allows	 us	 to	 estimate	 differences	 between	 groups	
of	plots	by	essentially	nesting	a	two-	way	ANOVA	within	the	model	
structure.	To	compare	inferences	on	habitat-	level	differences	from	
the	hierarchical	model	with	those	using	point	estimates	of	mean	EIVs	
as	 data,	 we	 fitted	 generalized	 linear	mixed	models	 (GLMMs)	with	
plot	ID	as	a	random	effect	nested	in	time-	period	to	account	for	re-
peat	sampling.	While	this	technically	is	a	hierarchical	model,	it	does	
not	 incorporate	 the	multilevel	 structure	which	 is	 the	 focus	of	 this	
study.	We	compared	these	models	to	their	hierarchical	 (multilevel)	
counterparts	 in	 terms	 of	 differences	 in	magnitude,	 precision,	 and	
sign	of	habitat	 level	estimates,	and	whether	differences	in	habitat-	
level	 EIVs	 between	 time-	periods	 were	 significant	 at	 the	 standard	
α =	0.05	 significance	 level.	 To	 perform	 these	 tests	 of	 significance,	
habitat-	level	differences	in	EIVs	for	each	GLMM	were	corrected	for	
multiple	 comparisons	 using	 the	multcomp	 package	 in	 R	 (Hothorn,	
Bretz,	&	Westfall,	2008).	We	also	calculated	Bayesian	R2	 for	each	
level	within	 the	hierarchical	models	 (data	 level,	varying	 intercepts,	
and	varying	slopes)	(Gelman	&	Pardoe,	2006).

2.2.3 | Analyses with incomplete species records

We	refitted	the	models	with	 incomplete	sets	of	species	artificially	
subsampled	from	a	selection	of	plots	to	test	model	performances	in	
predicting	plot	mean	EIVs	where	not	all	species	present	in	a	plot	are	
recorded.	As	 improving	plot	mean	EIV	estimates	by	pooling	 infor-
mation	across	plots—and	thus	improving	inferences	based	on	these	
estimates—is	 the	mechanism	 by	which	we	 suggest	 that	multilevel	
modeling	 is	 an	 improvement	on	methods	using	point	 estimates	of	
plot	mean	values	as	data,	 this	missing	species	analysis	also	served	
as	our	most	important	validation	procedure	(following	Lin,	Gelman,	
Price,	&	Krantz,	1999).	If	these	methods	can	accurately	estimate	plot	
mean	 values	 primarily	 from	 information	 shared	 across	 plots,	 with	
most	of	the	species	missing	from	the	focal	plot,	then	it	is	clear	that	
the	models	use	the	pooled	information	in	a	valuable	way.

Plots	were	chosen	in	a	random	stratified	manner;	one	plot	with	
>50	recorded	species	from	each	habitat	type	in	each	time-	period	(14	
total).	About	90%	of	species	in	each	of	these	14	plots	were	selected	
at	 random	 and	 excluded	 from	 the	 dataset,	 representing	 severe	
undersampling.	Models	M1,	M2,	 and	M3	were	 refitted	and	model	
outputs	compared	 to	 the	 raw	mean	values	when	all	data	were	 in-
cluded,	under	the	assumption	that	plots	with	>50	species	provided	
an	 adequate	 estimate	 of	 the	 “true	mean”	 value.	 This	 process	was	
repeated	iteratively	120	times	with	a	different	random	90%	of	spe-
cies	 removed	 from	each	 plot	 during	 each	 iteration.	Model	 perfor-
mances	were	compared	graphically,	and	using	calculated	summary	
statistics	 to	 assess	 precision	 and	 accuracy	 of	 plot	 level	 estimates	
for	plots	with	missing	species.	Precision	was	assessed	as	the	mean	
width	of	50%	and	95%	credible	intervals	of	plot	estimates,	and	as	the	
inverse	variance	of	plot	mean	estimates.	Accuracy	was	assessed	as	

the	proportion	of	times	the	“true	mean”	value	was	within	the	50%	
and	95%	credible	intervals,	and	as	the	mean	distance	of	point	mean	
estimates	from	the	“true	mean”	value.

2.3 | Software and validation

Models	 were	 fitted	 in	 JAGS	 and	 R	 version	 3.3.1	 using	 package	
runjags	with	minimally	 informative	priors	 following	Gelman	&	Hill,	
2006	(see	Supporting	Information	Data	S1	for	a	description	of	the	
models	in	the	Jags	language)	(Denwood,	2016;	R	Core	Team	2017).	
Additional	R	packages	were	used	for	analyses	of	mcmc	chains	and	
graphics	(Plummer,	Best,	Cowles,	&	Vines,	2006;	Wickham,	2009).	In	
addition	to	the	validation	discussed	in	Section	2.2.3,	we	performed	a	
range	of	posterior	predictive	checks	and	comparisons	between	sim-
ulated	and	real-	world	datasets	to	assess	model	adequacy	(following	
Gelman	&	Hill,	2006;	Kéry	&	Schaub,	2012).

3  | RESULTS

3.1 | Analyses with incomplete species records

Multilevel	model	estimates	from	both	models	M2	and	M3	were	con-
sistent	across	separate	 runs	of	 the	simulation,	 regardless	of	which	
10%	 species	 remained,	with	 high	 levels	 of	 precision	 and	 accuracy	
(Figure	2,	Table	1).	Plot	mean	estimates	with	missing	 species	were	
closer	 to	 the	 true	means	 for	hierarchical	 vs.	 nonhierarchical	mod-
els	for	all	four	EIVs,	often	by	more	than	a	factor	of	two—averaging	
across	replications	and	depleted	plots	(Table	1).	The	proportions	of	
“hits”	for	50%	and	95%	credible	intervals	about	the	mean	estimates	
differed	between	models	 and	EIVs,	but	underperformed	 for	 some	
hierarchical	models	due	to	consistent	misses	across	replications	for	
some	individual	sample	plots	(Figure	2).	Models	without	group-	level	
habitat	predictors	performed	slightly	better	in	this	respect	(Table	1).

3.2 | Plot- level inference

Out	of	sample	predictive	accuracy	was	markedly	better	in	hierarchi-
cal	vs.	nonhierarchical	models	for	all	five	EIVs	as	estimated	by	DIC	
(ΔDIC	between	8.6	and	40),	and	models	including	group-	level	habi-
tat	predictors	(M3)	were	invariably	the	best	by	this	criteria	(Table	2).	
Estimates	 of	 variance	 among	 species	 EIVs	 within	 sample	 plots	
(σspecies)	from	hierarchical	models	were	much	larger	in	all	cases	than	
between	plot	(σα)	and	between	time-	period	(σβ)	variance	estimates.	
The	 inclusion	 of	 ecological	 habitat	 type	 in	 the	M3	models	 signifi-
cantly	reduced	residual	variance	in	plot-	level	 intercepts	and	slopes	
(σα	and	σβ)	for	models	of	all	EIVs.	The	extent	to	which	intercepts	and	
slopes	 were	 pooled	 (��)	 and	 (�� )	 differed	 between	 models	 of	 the	
five	EIVs,	but	was	much	higher	for	model	M3	versus	M2	in	all	cases,	
which	exemplifies	how	adding	habitat	type	provided	a	better	target	
for	pooled	estimates	by	reducing	residual	variance	in	plot-	level	pa-
rameter	estimates	(Table	2).	The	inclusion	of	ecological	habitat	type	
in	the	M3	models	explained	over	40%	of	variation	in	the	pooled	plot-	
level	slope	parameters	for	EIVs	L,	N,	R,	and	S,	while	it	explained	33%	
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for	EIV	F,	which	also	had	higher	estimates	of	σβ	both	before	and	after	
the	inclusion	of	habitat	than	the	other	EIVs	(Figure	3).

3.3 | Habitat- level inference

Estimates	 of	 change	 in	 mean	 habitat-	level	 EIVs	 between	 time-	
periods	1	and	2	differed	to	a	 large	extent	between	full	multilevel	
models	 (M3)	and	GLMMs	using	 raw	mean	EIVs	as	data	 (Figure	4).	
While	mean	 estimates	 of	 habitat	 level	 change	were	 often	 similar	
between	the	two	sets	of	models,	hierarchical	model	estimates	were	
more	precise	with	narrower	95%	Bayesian	credible	 intervals	 than	
GLMM	estimates.	Furthermore,	to	infer	differences	at	the	standard	
α	=	0.05	level	as	commonly	practiced,	GLMM	confidence	intervals	
need	to	be	adjusted	for	multiple	comparisons,	whereas	pooled	esti-
mates	from	hierarchical	models	do	not	(Gelman	et	al.,	2012),	which	
led	to	a	rejection	of	a	null	hypothesis	of	no	change	in	environmental	
conditions	in	six	of	35	instances	in	this	system	using	estimates	from	
the	 full	multilevel	model	where	we	would	have	to	accept	 the	null	
hypothesis	of	no	change	using	the	GLMM	estimates	(Figure	4).	This	
may	lead	one	to	conclude	that	there	has	been	no	significant	change	
in	 the	 harbour	 shore	 habitat	 from	 GLMM	 results	 for	 instance,	
whereas	hierarchical	model	results	show	strong,	precise	directional	

change	in	soil	nutrients	(N),	pH	(R),	and	salinity	(S)	underlying	these	
assemblages.	Similarly,	GLMM	results	would	underestimate	the	ex-
tent	 of	 change	 in	 the	marsh,	woodland,	 and	 dune	 heath	 habitats	
compared	with	the	more	precise	hierarchical	estimates.	However,	
despite	 the	 adjusted	 confidence	 intervals	 in	 the	GLMMs,	 pooling	
of	estimates	in	the	multilevel	models	led	to	more	conservative	es-
timates	of	change	in	the	dune	habitat,	which	would	lead	us	to	con-
clude	minimal	change	over	 time	 (accept	 the	null	hypothesis	of	no	
change)	for	EIVs	L	and	S,	while	we	would	conclude	stronger	nega-
tive	change	from	GLMM	estimates	(reject	the	null	hypothesis	of	no	
change).

4  | DISCUSSION

We	have	shown	that	multilevel	modeling	provides	improved	discrimi-
natory	power	when	estimating	differences	in	mean	Ellenberg	indica-
tor	values	between	historical	and	contemporary	plant	assemblages,	
both	at	 the	 level	of	 individual	plots	 and	across	 the	wider	 commu-
nity.	Multilevel	models	suggested	a	prominent	 role	of	hydrological	
changes—alongside	succession	processes—in	driving	compositional	
change	between	sampling	periods	 in	our	case	study,	 the	extent	of	

F IGURE  2 Mean	estimates	with	50%	uncertainty	intervals	of	plot-	level	Ellenberg	Indicator	Values	(EIVs)	F,	L,	N	R,	and	S	from	plots	with	
a	random	90%	of	species	removed.	One	plot	with	50	or	more	recorded	species	was	randomly	chosen	from	each	habitat	type	in	each	of	two	
sampling	periods.	Red	lines	are	plot	mean	EIVs	with	full	cohort	of	species	remaining.	The	three	clouds	of	points	from	left	to	right	in	each	grid	
panel	display	uncertainty	intervals	from:	(a)	No-	pooling	models,	representing	raw	mean	estimates	of	10%	of	species	randomly	remaining	
in	each	iteration;	(b)	Estimates	from	hierarchical	models	with	partial	pooling	of	plot	intercept	and	slope	parameters,	and;	(c)	Estimates	from	
hierarchical	models	with	partial	pooling	including	group	level	habitat	predictors.	Plot	shows	a	subset	of	20	of	120	iterations	run	in	total	for	
clarity
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which	would	not	be	revealed	by	inference	using	point	estimates	of	
plot	mean	 EIVs	 as	 data.	When	we	 removed	 90%	 of	 plant	 species	
from	a	selection	of	species	rich	plots,	estimates	of	plot	mean	EIVs	
from	hierarchical	models	were	very	close	in	the	majority	of	cases	to	
mean	values	with	the	full	cohort	of	species	remaining.	This	was	 in	
stark	contrast	to	raw	means	for	randomly	remaining	species,	and	it	
demonstrates	the	rich	potential	for	improving	estimation	and	infer-
ence	by	pooling	 information	across	plots	 in	hierarchical	models	 in	
instances	of	nonsystematic	missing	data,	which	are	common	in	eco-
logical	studies.	Taken	together	these	findings	highlight	the	potential	
value	of	 information	discarded	when	point	estimates	of	plot	mean	
EIVs	are	used	as	the	starting	point	for	inference	and	show	how	hi-
erarchical	modeling	can	increase	the	utility	of	EIVs	in	suggesting	the	
nature	of	environmental	 factors	 likely	underlying	changes	 in	plant	
community	composition.

4.1 | Model performance with missing data

The	 phenomenon	 of	 recorders	 overlooking	 species	 present	 when	
performing	 surveys	 is	 a	 consistent	 feature	 of	 ecological	 sampling	
and	can	lead	to	bias	in	estimates	of	many	ecological	rate	and	state	
variables	(Chen	et	al.,	2013;	Kéry,	2004;	Kéry	&	Gregg,	2003).	While	
missing	species	may	not	be	an	issue	when	using	weighted	averages	
of	EIVs	(Ewald,	2003),	our	analyses	on	artificially	depleted	plots	for	
presence/absence	 data	 show	 the	 utility	 of	 hierarchical	 models	 to	

help	alleviate	inaccuracy	in	estimates	due	to	imperfect	sampling	and	
non-	systematic	missing	data.	The	ability	of	the	multilevel	models	to	
estimate	plot	mean	EIVs	accurately	when	the	majority	of	species	are	
missing	should	also	allay	any	apprehensions	over	using	the	ordinal	
EIVs	fit	to	a	Gaussian	distribution	at	the	data	level	of	these	models;	
improvement	in	plot	mean	values	is	the	primary	aim	of	this	study	and	
results	from	analyses	on	depleted	datasets	demonstrate	that	this	has	
been	achieved.

4.2 | Habitat- level inference

Hierarchical	 model	 performances	 improved	 with	 habitat	 type	 as	
a	 group-	level	 predictor	 by	 providing	 better	 targets	 for	 pooled	 es-
timates.	 Furthermore,	 the	 ability	 to	 infer	 change	 over	 time	 from	
resulting	habitat	estimates	without	correcting	for	multiple	compari-
sons	allows	us	to	build	a	more	nuanced	and	precise	picture	of	envi-
ronmental	change	over	time.	Effect	sizes	for	changes	in	habitat	level	
mean	EIVs	in	the	Studland	case	study	were	small	(<1)	in	all	cases,	but	
as	these	specify	average	changes	across	entire	habitats	they	still	in-
dicate	meaningful	directional	changes	in	environmental	conditions.	
With	small	effect	sizes—as	will	usually	be	the	case	given	the	scale	
on	which	EIVs	are	quantified—the	increased	precision	of	estimates	
gained	 from	hierarchical	modeling	 is	 a	major	 advantage	 in	 reveal-
ing	the	direction	and	magnitude	of	environmental	change	in	a	study	
system.

TABLE  1 Model	performances	from	analyses	of	plots	with	a	random	90%	of	species	removed.	All	statistics	were	calculated	for	14	
depleted	plots	over	130	simulations	of	the	validation	analysis

Model Mean width 0% CI Mean width 95% CI Mean precision
Proportion of 
hits 50% CI

Proportion of 
hits 95% CI

Avg. dist. 
from true 
mean

EIV	F

RV	M1 0.87 2.54 3.97 0.53 0.96 0.51

RV	M2 0.61 1.77 14.58 0.58 0.96 0.32

RV	M3 0.51 1.5 27.48 0.53 0.87 0.36

EIV	L

RV	M1 0.46 1.33 11.52 0.52 0.96 0.25

RV	M2 0.2 0.6 412.84 0.46 0.89 0.15

RV	M3 0.19 0.57 429.94 0.39 0.82 0.17

EIV	N

RV	M1 0.83 2.41 4.02 0.54 0.97 0.46

RV	M2 0.36 1.07 193.62 0.45 0.99 0.2

RV	M3 0.39 1.05 170.69 0.58 1 0.16

EIV	R

RV	M1 0.78 2.25 4.45 0.5 0.97 0.44

RV	M2 0.39 1.16 77.89 0.5 0.92 0.26

RV	M3 0.37 1.09 96.02 0.55 0.9 0.21

EIV	S

RV	M1 0.54 1.58 32.99 0.64 0.92 0.3

RV	M2 0.24 0.72 671.08 0.66 0.89 0.18

RV	M3 0.21 0.62 605.52 0.55 0.85 0.19
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Broad	 increases	 in	 EIV	 N	 across	 the	 habitats	 of	 Studland	 are	
in-	line	with	studies	over	a	similar	period	both	across	the	county	of	
Dorset	(Newton	et	al.,	2012)	and	further	afield	(Bennie,	Hill,	Baxter,	
&	 Huntley,	 2006),	 possibly	 resulting	 from	 atmospheric	 nitrogen	
deposition.	Other	trends	are	likely	more	specific	to	Studland,	includ-
ing	wetter	conditions	across	the	marsh	habitat,	and	decreases	in	EIV	
L	across	the	woodland	and	dune	heath	habitats	probably	indicating	
ecological	succession.	Such	location	specific	changes	in	the	environ-
ment	could	have	 important	effects	on	co-	occurring	animal	assem-
blages.	For	example,	changes	in	precipitation	levels	can	lead	to	shifts	
in	vegetation	structure	and	resulting	changes	in	rodent	community	
composition	(Ernest,	Brown,	Thibault,	White,	&	Goheen,	2008).	The	
wetter	marshes	of	Studland	may	have	similarly	affected	local	inver-
tebrate	and	mammal	assemblages,	and	we	have	shown	that	hierar-
chical	modeling	is	better	suited	to	uncover	such	effects	when	using	
EIVs.

While	 pooled	 habitat	 level	 estimates	 from	multilevel	 models	
suggested	more	 widespread	 change	 across	 the	 Studland	 system	
than	did	estimates	from	the	GLMMs,	they	were	also	more	conser-
vative	than	the	GLMM	estimates	in	an	important	way,	exemplified	
by	 the	dune	habitat.	Larger	changes	estimated	 from	the	GLMMs	
in	dune	plots	result	 from	a	 large	 influence	of	one	plot	 (dune	plot	
number	6,	 Figure	3),	whereas	 in	 the	multilevel	models,	 the	 influ-
ence	of	this	plot	was	dampened	by	the	pooling	of	this	plot’s	slope	
(β)	estimate.	In	time-	period	1,	this	was	a	newly	formed	dune	which	

only	 seven	 plant	 species	 had	 colonized.	 From	 typical	 dune	 suc-
cession,	we	would	expect	this	plot	to	become	more	shaded,	more	
acidic,	and	more	nutrient	rich	over	time	(Jones,	Sowerby,	Williams,	
&	Jones,	2008).	While	the	raw	mean	estimates	do	suggest	that	it	
has	become	more	shaded	and	more	acidic	by	time-	period	2,	they	
would	also	suggest	that	it	has	become	less	nutrient	rich.	It	seems	
likely	that	the	apparent	decrease	in	soil	nutrient	levels	in	this	plot	
is	a	confounded	estimate	driven	by	the	strong	correlation	between	
EIV	R	and	N	(Diekmann,	2003),	at	a	plot	where	soil	pH	was	proba-
bly	a	stronger	driver	of	species	recruitment	in	time-	period	1	(Jones	
et	al.,	 2008).	We	would	 suggest	 that	 without	 specific	 ecological	
knowledge	of	a	plot,	in	general	it	is	a	worthwhile	trade-	off	to	un-
derweight	 plot	mean	 values	 as	 the	multilevel	models	 should	 do,	
rather	 than	overweighting	 it	as	 is	probable	using	point	estimates	
from	plots	with	sparse	data.	This	should	reduce	overconfidence	in	
specific	plot	values,	giving	a	more	accurate	estimate	of	change	in	
this	plot	despite	the	few	plant	species	present	in	the	1930s,	while	
also	 reducing	 the	 effect	 of	 outliers	 on	 habitat-	level	 estimates	 of	
change	(McElreath,	2016).

4.3 | Plot- level inference

Using	 hierarchical	 models	 to	 account	 explicitly	 for	 different	
variance	 components	 in	 a	 study	 system,	 we	 can	 build	 a	 more	
in-	depth	picture	of	changes	that	have	occurred.	In	the	Studland	

TABLE  2 Residual	variance	(σ),	Bayesian	R2,	mean	pooling	of	estimates	(λ),	effective	number	of	parameters	(pD),	and	DIC	values	for	
models	fit	to	Ellenberg	Indicator	Values	F,	L,	N,	R,	and	S	of	plant	species	from	a	re-	visitation	study	on	the	Studland	peninsula	between	the	
1930s	and	2010s.	NP	are	“no-	pooling,”	H	are	“hierarchical,”	and	HG	are	“Hierarchical	with	group-	level	predictor”	models.	Parameters	with	
subscripts	α	and	β	were	estimated	at	the	level	of	varying	intercepts	and	slopes,	respectively

Model σplant σα σβ R
2
plant

R2
�

R
2
�

λα λβ pD DIC

EIV	F

M1(NP) 1.74 — — 0.22 — — — — 149.1 36,391.8

M2(H) 1.74 1.09 0.62 0.22 0 0 0.05 0.25 127.5 36,383.2

M3(HG) 1.74 0.47 0.53 0.22 0.83 0.33 0.3 0.38 117.8 36,371.2

EIV	L

M1(NP) 0.91 — — 0.12 — — — — 148.9 24,561.4

M2(H) 0.91 0.28 0.18 0.12 0 0 0.13 0.41 98.7 24,526.8

M3(HG) 0.91 0.18 0.15 0.12 0.63 0.41 0.36 0.61 94.7 24,521.9

EIV	N

M1(NP) 1.64 — — 0.06 — — — — 148.8 35,330.1

M2(H) 1.64 0.33 0.3 0.06 0 0 0.24 0.42 90.4 35,290.8

M3(HG) 1.64 0.25 0.24 0.06 0.42 0.44 0.43 0.62 87.1 35,289.5

EIV	R

M1(NP) 1.56 — — 0.08 — — — — 148.9 34,100.7

M2(H) 1.54 0.45 0.35 0.08 0 0 0.17 0.42 107.5 34,071.4

M3(HG) 1.54 0.34 0.28 0.08 0.43 0.44 0.33 0.6 100.9 34,068.6

EIV	S

M1(NP) 1.08 — — 0.22 — — — — 148.9 27,596.9

M2(H) 1.08 0.56 0.21 0.22 0 0 0.06 0.52 108 27,577

M3(HG) 1.08 0.27 0.18 0.19 0.76 0.43 0.29 0.62 95 27,563.6



     |  9CARROLL et AL.

case	 study,	 variance	 in	 EIV	 scores	 among	 plant	 species	 within	
sample	 plots	 (σspecies)	 was	 larger	 in	 all	 cases	 than	 variance	 be-
tween	 plots	 (σα)	 and	 variance	 in	 plot-	level	 changes	 between	
time-	periods	(σβ)	for	all	EIVs,	which	illustrates	the	value	in	pool-
ing	information	between	plots	in	this	way	to	improve	estimates	
of	plot	mean	values.	High	variance	estimates	within	plots	reflect	
the	 fact	 that	 the	 environmental	 parameter	 an	 EIV	 represents	

tends	to	play	just	a	small	role	in	determining	whether	a	plant	spe-
cies	occurs	in	a	given	area,	and	that	in	any	sample	plot	only	a	sub-
set	of	species	 likely	to	occur	despite	environmental	constraints	
will	do	so	at	a	given	time	(Pärtel,	2014).	Species	may	be	absent	
from	plots	 they	could	potentially	occupy	 for	various	 stochastic	
and	mechanistic	reasons	(Callaway	&	Walker,	1997;	Chave,	2004;	
Leibold	 et	al.,	 2004),	 or	 they	may	 be	missed	 by	 recorders	 in	 a	

F IGURE  3 Changes	in	Ellenberg	Indicator	Values	(EIVs)	between	sampling	in	the	1930s	and	resampling	in	2010s.	Plots	show	mean	and	
95%	Bayesian	credible	intervals	for	estimates	of	plot-	level	changes	between	sampling	periods	for	each	of	seven	habitats	(Map	inset).	Each	
grid	cell	contains	varying	slope	parameters	(β’s)	from	models	M1	(no-	pooling),	M2	(hierarchical),	and	M3	(hierarchical)	from	left	to	right,	
respectively.	Horizontal	red	lines	indicate	zero	change	between	sampling	periods.	White	textboxes	show	unexplained	variance	in	slope	
parameters	in	hierarchical	models	with	and	without	habitat	as	a	predictor	(�M2

�
	and	�M3

�
,	respectively)	and	the	estimated	proportion	of	

variance	explained	by	habitat	as	a	group-	level	predictor	for	slope	parameters	(Bayesian	R2).	Each	column	represents	numbered	plots	within	
habitat	types
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given	sampling	instance	as	previously	discussed	(Kéry	&	Andrew	
Royle,	2010).	Computation	of	separate	R2	values	for	variance	ex-
plained	by	habitat	type	for	intercept	and	slope	parameters	is	also	
highly	valuable,	as	practitioners	will	often	be	interested	only	 in	
the	changes	over	time,	and	not	the	baseline	differences	between	
habitat	types.

The	 ability	 to	 provide	 a	 plot-	specific	 picture	 of	 local	 change	
alongside	estimates	of	average	trends	across	the	wider	landscape	
should	 also	 prove	 valuable	 to	 those	 wishing	 to	 concentrate	 on	
finer	details	to	aid	management,	or	to	use	as	indicators	of	dynam-
ics	affecting	ecological	communities	contemporaneous	with	plant	
assemblages.	For	example,	when	we	look	at	changes	in	plot	mean	
EIVs	over	the	80-	year	period	across	the	Studland	Peninsula	(β	pa-
rameters),	we	see	it	was	far	more	variable	for	EIV	F	(moisture)	than	
for	 the	 other	 EIVs	 both	 before	 and	 after	 accounting	 for	 habitat	
type.	While	some	changes	in	this	system—such	as	levels	of	shade	
(EIV	L)	across	the	woodland	plots—may	have	clear	ecological	expla-
nations	(e.g.,	succession)	specific	to	habitat	types,	highly	variable	
changes	in	plot	mean	EIV	F	estimates	suggest	that	changes	in	the	
hydrological	profile	of	the	peninsula	is	an	important	abiotic	driver	
of	 change	 in	 community	 composition	 across	 habitat	 boundaries.	
With	hierarchical	models,	we	can	pinpoint	outliers	or	plots	within	
which	 change	 does	 not	match	 plots	 in	 a	 similar	 habitat	 because	
pooling	 allows	 us	 to	 view	 each	 estimated	 plot	mean	 in	 isolation	
with	more	confidence	that	it	is	a	balanced	estimate	(Gelman	et	al.,	
2012).	 Inspection	of	 these	plot	values	could	 lead	one	 to	develop	
new	 hypotheses	 about	 drivers	 of	 change—for	 instance	 spatial	
proximity	to	a	body	of	water,	or	height	above	sea	level—which	can	
be	easily	incorporated	back	into	the	model	once	data	is	compiled	
on	them	to	assess	their	influence.	In	this	way,	hierarchical	models	
can	be	used	in	conjunction	with	knowledge	of	the	details	of	a	spe-
cific	 system	 to	 uncover	 drivers	 of	 change	 as	 part	 of	 an	 iterative	
scientific	process.

4.4 | Model extensions and flexibility

The	multilevel	models	presented	here,	particularly	fitted	in	a	flex-
ible	Bayesian	 framework,	 can	be	extended	or	 adapted	 to	 specific	
study	 systems	 in	many	useful	ways.	 For	 instance,	 other	 grouping	
factors—in	place	of	 or	 in	 addition	 to	habitat	 type—may	be	 added	
to	 the	 submodels	 for	 intercepts	 and/or	 slopes	 (e.g.,	 natural	 vs.	
semi-	natural,	grazing	regime,	management	practice).	Similarly,	con-
tinuous	predictors	could	be	added	if	they	are	of	interest	(e.g.,	plot	
elevation,	plot	area).	One	could	also	add	predictors	at	the	level	of	
species	within	plots	such	as	%cover	or	invasive	vs.	noninvasive	spe-
cies,	depending	on	specific	study	aims.	Informative	or	regularizing	
priors	may	be	used,	which	could	be	particularly	useful	in	instances	
of	small	sample	sizes	in	terms	of	numbers	of	plots	or	species	rich-
ness	within	plots	 (McElreath,	2016).	Finally,	 the	method	could	be	
adapted	for	use	on	any	quantitative	trait	values	which	are	averaged	
across	species,	which	may	help	address	issues	of	robustness	(Aiba	
et	al.,	2013).

5  | CONCLUSIONS

The	increasing	prevalence	of	resurvey	studies	in	plant	ecology,	cou-
pled	 with	 the	 importance	 of	 understanding	 accelerating	 environ-
mental	 change,	 has	 led	 to	 Ellenberg	 indicator	 values	 becoming	 an	
important	tool	in	the	ecologists’	kit.	We	have	demonstrated	how	mul-
tilevel	modeling	can	provide	a	more	powerful	discriminatory	frame-
work	when	using	EIVs	to	hypothesize	the	nature	of	environmental	
dynamics	 underlying	 compositional	 change	 in	 plant	 communities.	
These	methods	also	perform	very	well	in	situations	where	some	or	
all	 plots	 sampled	do	not	have	 the	 full	 cohort	of	 species	 recorded.	
Our	 contribution	 describes	 one	 more	 way	 hierarchical	 modeling,	
particularly	 applied	 in	 a	 flexible	 Bayesian	 framework,	 provides	 an	

F IGURE  4 Mean	and	95%	Bayesian	
credible	intervals	(top)	and	confidence	
intervals	(bottom)	for	habitat	level	
differences	in	mean	Ellenberg	Indicator	
Values	(EIVs)	for	Moisture	(F),	Light	(L),	
Nutrients	(N)	Reaction	(R)	and	Salinity	
(S)	on	the	Studland	peninsula	between	
the	1930s	and	2010s.	Top	row	shows	
estimates	from	multilevel	models	with	
recorded	species	EIVs	as	data	(model	M3	
from	text),	while	the	bottom	row	shows	
estimates	from	mixed	effects	models	
using	raw	means	of	plot	EIVs	as	data.	
Red	extensions	to	the	GLMM	confidence	
intervals	represent	corrections	for	
multiple	testing;	hierarchical	estimates	do	
not	need	to	be	corrected	due	to	pooling	of	
estimates
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ideal	way	to	describe	the	multitude	of	hierarchical	structures	we	see	
at	all	 levels	 in	biological	 systems,	 from	cells	 to	meta-	communities.	
Furthermore,	 we	 contest	 that	 identifying	 and	 explicitly	 modeling	
components	of	variation	within	an	ecological	system	in	this	way	can	
lead	to	the	development	of	further	hypotheses	about	environmental	
drivers	shaping	plant	community	functional	characteristics	in	a	way	
that	 is	difficult	 using	 traditional	 statistical	 techniques,	 as	our	 case	
study	demonstrates.
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