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Abstract
1.	 High-throughput	environmental	sensing	technologies	are	 increasingly	central	to	
global	monitoring	of	the	ecological	impacts	of	human	activities.	In	particular,	the	
recent	boom	in	passive	acoustic	sensors	has	provided	efficient,	noninvasive,	and	
taxonomically	broad	means	to	study	wildlife	populations	and	communities,	and	
monitor	their	responses	to	environmental	change.	However,	until	recently,	tech-
nological	costs	and	constraints	have	largely	confined	research	in	passive	acoustic	
monitoring	(PAM)	to	a	handful	of	taxonomic	groups	(e.g.,	bats,	cetaceans,	birds),	
often	in	relatively	small-scale,	proof-of-concept	studies.

2.	 The	arrival	of	low-cost,	open-source	sensors	is	now	rapidly	expanding	access	to	
PAM	technologies,	making	it	vital	to	evaluate	where	these	tools	can	contribute	to	
broader	 efforts	 in	 ecology	 and	 biodiversity	 research.	Here,	we	 synthesise	 and	
critically	assess	the	current	emerging	opportunities	and	challenges	for	PAM	for	
ecological	 assessment	 and	 monitoring	 of	 both	 species	 populations	 and	
communities.

3.	 We	show	that	terrestrial	and	marine	PAM	applications	are	advancing	rapidly,	fa-
cilitated	by	emerging	sensor	hardware,	the	application	of	machine	learning	inno-
vations	 to	 automated	wildlife	 call	 identification,	 and	work	 towards	 developing	
acoustic	 biodiversity	 indicators.	However,	 the	 broader	 scope	 of	 PAM	 research	
remains	constrained	by	limited	availability	of	reference	sound	libraries	and	open-
source	audio	processing	tools,	especially	for	the	tropics,	and	lack	of	clarity	around	
the	accuracy,	transferability	and	limitations	of	many	analytical	methods.

4.	 In	order	to	improve	possibilities	for	PAM	globally,	we	emphasise	the	need	for	col-
laborative	work	to	develop	standardised	survey	and	analysis	protocols,	publicly	
archived	sound	libraries,	multiyear	audio	datasets,	and	a	more	robust	theoretical	
and	analytical	framework	for	monitoring	vocalising	animal	communities.
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1  | INTRODUC TION

There	 is	 a	 growing	 need	 for	 cost-	effective,	 scalable	 ecological	
monitoring	 techniques,	 in	 light	 of	 global	 declines	 in	 biodiversity	
(Cardinale	 et	al.,	 2012).	 Alongside	 addressing	 fundamental	 eco-
logical	 questions,	 survey	 and	 monitoring	 data	 are	 essential	 in	
evaluating	 trends	 and	 drivers	 of	 population	 change,	 informing	
conservation	 planning	 and	 efficacy	 assessment,	 and	 addressing	
biodiversity	 policy	 commitments	 (Honrado,	 Pereira,	 &	 Guisan,	
2016).	Traditional	survey	methods	(e.g.,	manual	counts,	trapping)	
are	limited	by	being	resource	intensive	and	invasive,	but	are	now	
complemented	 by	 a	 suite	 of	 high-	throughput	 sensing	 technolo-
gies	including	satellite	sensing,	LIDAR,	and	camera	traps.	Passive	
acoustic	 sensors	 have	 become	 an	 increasingly	 important	 com-
ponent	 of	 this	 survey	 toolbox.	 Many	 animals	 emit	 acoustic	 sig-
nals	 that	encode	 information	about	 their	presence	and	activities	
(Bradbury	&	Vehrencamp,	1998).	Sound	is	also	an	important	fea-
ture	of	the	sensory	environment,	and	anthropogenic	acoustic	phe-
nomena	are	a	critical	yet	understudied	dimension	of	global	change	
(e.g.,	Buxton	et	al.,	2017).

Opportunities	to	acoustically	survey	wildlife	and	environments	
have	historically	been	limited	by	technological	costs	and	constraints,	
but	this	situation	is	fast	improving.	For	example,	the	recently	released	
AudioMoth	low-	cost	sensor	has	seen	broad	uptake	for	study	objec-
tives	ranging	from	population	ecology	to	anthropogenic	activity	(Hill	
et	al.,	 2018).	 Such	 initiatives	 now	 enable	 deployment	 of	multisen-
sor	networks	at	scale,	involving	both	experts	and	volunteers	(Jones	
et	al.,	2013;	Newson,	Evans,	&	Gillings,	2015).	Passive	acoustic	mon-
itoring	(PAM)	is	thus	increasingly	suited	to	objectives-	driven	survey	
and	 monitoring	 programmes,	 whose	 protocols	 must	 be	 standard-
isable,	 scalable,	 and	 financially	 sustainable	 (Honrado	 et	al.,	 2016).	
However,	the	resulting	massive	audio	datasets	still	present	formida-
ble	 logistical	and	analytical	difficulties,	and	it	remains	unclear	how	
effectively	current	PAM	methodologies,	which	have	mostly	been	de-
veloped	in	small-	scale,	taxonomically	focused	contexts	(mostly	bats	

and	cetaceans),	can	translate	to	the	broader	challenges	of	acoustic	
biodiversity	 monitoring.	 In	 this	 review,	 we	 synthesise	 current	 re-
search	 to	 highlight	 emerging	 opportunities	 and	 critical	 knowledge	
gaps.	We	discuss	current	applications	of	PAM	technologies,	identify	
challenges	and	research	priorities	at	each	stage	of	the	PAM	pipeline	
(Figure	1),	and	lastly	discuss	significant	emerging	trends	for	PAM	in	
ecological	research.

2  | PA SSIVE ACOUSTIC S APPLIC ATIONS 
IN ECOLOGY

Many	 animals	 actively	 produce	 sound	 for	 communication,	 and	
echolocating	 species	 also	 emit	 sounds	 for	 navigation	 and	 prey	
search	 (Bradbury	&	Vehrencamp,	 1998).	 Vocalising	 animals	 thus	
leak	information	into	their	surroundings	regarding	their	presence,	
behaviour,	and	interactions	in	space	and	time	(Kershenbaum	et	al.,	
2014).	 Long-	established	 acoustic	 survey	 methods,	 for	 example,	
bird	 or	 amphibian	 point	 counts,	 typically	 involve	 experienced	
surveyors	 identifying	 species	 in	 the	 field	 (Gregory,	 Gibbons,	 &	
Donald,	 2004).	 In	 contrast,	 PAM	 involves	 recording	 sound	using	
passive	 acoustic	 sensors	 (recorders,	 ultrasound	 detectors,	 mi-
crophones	 and/or	 hydrophones;	 henceforth	 “acoustic sensors”)	
(Blumstein	 et	al.,	 2011)	 and	 subsequently	 deriving	 relevant	 data	
from	 audio	 (e.g.,	 species	 detections,	 environmental	 sound	 met-
rics)	 (Bittle	 &	Duncan,	 2013;	 Digby,	 Towsey,	 Bell,	 &	 Teal,	 2013;	
Merchant	 et	al.,	 2015)	 (Figure	1).	 Passive	 acoustics	 approaches	
have	long	been	applied	to	studying	visually	cryptic	animals	such	as	
cetaceans	and	echolocating	bats	(Nowacek,	Christiansen,	Bejder,	
Goldbogen,	&	Friedlaender,	2016;	Walters	et	al.,	2013),	but	in	re-
cent	years	their	scope	has	expanded	with	the	arrival	of	purpose-	
designed	 acoustic	 sensors.	 These	 are	 noninvasive,	 autonomous,	
usually	 omni-	directional	 (sampling	 a	 three-	dimensional	 sphere	
around	the	sensor),	and	offer	the	advantage	of	a	larger	detection	
area	and	 fewer	 taxonomic	 restrictions	 than	camera	 traps	 (which	

F IGURE  1 A	typical	passive	acoustic	monitoring	workflow
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are	usually	limited	to	detecting	larger	birds	and	mammals	at	close	
range)	 (Lucas,	 Moorcroft,	 Freeman,	 Rowcliffe,	 &	 Jones,	 2015).	
As	such,	they	can	simultaneously	survey	entire	vocalising	animal	
communities	 and	 their	 acoustic	 environments	 (Wrege,	 Rowland,	
Keen,	&	Shiu,	2017).

Species	 detections	 derived	 from	 PAM	 are	 analogous	 to	
other	forms	of	survey	data,	with	applications	ranging	from	spe-
cies	occupancy	estimation	to	biodiversity	assessment	(detailed	
in	 Table	1).	 Their	 benefits	 over	 traditional	 surveys	 include	
continuous	surveying	for	 long	periods	with	 low	manual	effort,	
and	 the	associated	higher	 likelihood	of	detecting	 rarer	or	 less	
vocally	 active	 species	 (Klingbeil	&	Willig,	 2015).	 Standardised	
post	 hoc	 analysis	 also	 avoids	 the	 skill	 level	 biases	 in	 species	
identification	that	often	impact	citizen	science	data	(Isaac,	van	
Strien,	 August,	 de	 Zeeuw,	 &	 Roy,	 2014).	 Conversely,	 current	
limitations	 of	 PAM	 data	 include	 their	 unsuitability	 for	 study-
ing	nonacoustic	species,	and	the	inability	to	identify	individual	
calling	animals	 for	most	 taxa	 (in	contrast	 to	visual	 recognition	
or	mark-	recapture).

Beyond	 supporting	 established	 survey	 approaches,	 PAM	
also	offers	unique	possibilities,	including	study	of	vocalising	be-
haviour,	 intraspecific	 variability	 in	 call	 repertoire,	 and	 the	 evo-
lution	 of	 acoustic	 communities	 (Blumstein	 et	al.,	 2011;	 Linhart	
&	Šálek,	2017;	Prat,	Taub,	&	Yovel,	2016;	Tobias,	Planqué,	Cram,	
&	Seddon,	2014);	animal	responses	to	the	acoustic	environment	
(Nowacek	et	al.,	2016;	Simpson,	Meekan,	Jeffs,	Montgomery,	&	
McCauley,	2008);	and	monitoring	of	anthropogenic	phenomena	
such	 as	 sound	 pollution,	 blast	 fishing,	 and	 poaching	 (Astaras,	
Linder,	Wrege,	Orume,	&	Macdonald,	2017;	Braulik	et	al.,	2017)	
(Table	1).	 There	 is	 a	 rich	 literature	 on	 the	 effects	 of	 anthropo-
genic	noise	on	cetacean	and	 increasingly	avian	populations	and	
behaviour	(e.g.,	Pirotta,	Merchant,	Thompson,	Barton,	&	Lusseau,	
2015;	 Proppe,	 Sturdy,	 &	 St.	 Clair,	 2013).	 Sensor	 networks	 can	
monitor	ecosystems	over	large	geographical	and	temporal	scales,	
facilitating	 the	characterisation	of	 acoustic	 communities	 across	
habitats	 and	 biomes	 and	 the	 development	 of	 putative	 acoustic	
biodiversity	 indices	 (Nedelec	 et	al.,	 2015;	 Sueur,	 Farina,	 Gasc,	
Pieretti,	&	Pavoine,	2014;	Sueur,	Pavoine,	Hamerlynck,	&	Duvail,	
2008)	 (Table	1).	 Researchers	 are	 also	 now	 starting	 to	 explore	
the	opportunities	afforded	by	archived	audio	datasets	collected	
over	years	or	decades,	often	by	volunteers	or	multiple	research	
groups	(Jones	et	al.,	2013;	Van	Parijs	et	al.,	2015).	For	example,	
bat	monitoring	data	have	been	repurposed	to	study	orthoptera	in	
the	United	Kingdom	and	France	(Newson,	Bas,	Murray,	&	Gillings,	
2017;	 Penone	 et	al.,	 2013)	 and	 predict	 impacts	 of	 urban	 plan-
ning	 on	 bats	 (Border,	 Newson,	White,	 &	 Gillings,	 2017).	 Long-	
term	 datasets	 offer	 complex	 insights	 into	 population	 ecology,	
behaviour,	 and	 human	 impacts	 which,	 particularly	 for	 cryptic	
species,	 can	 otherwise	 be	 difficult	 to	 achieve	 (e.g.,	 forest	 ele-
phants;	Wrege	et	al.,	2017).	Such	archives	could	also	contribute	
much-	needed	species	data	to	global	repositories	for	biodiversity	
modelling	 and	monitoring	 (e.g.,	Global	 Biodiversity	 Information	
Facility).

3  | PA SSIVE ACOUSTIC SENSOR 
TECHNOLOGIES AND SURVE Y 
APPROACHES

3.1 | Passive acoustic sensor hardware

In	 contrast	 to	 early	 PAM	 studies	 that	 repurposed	 field	 recorders	
(Riede,	 1993)	 or	 naval	 or	 seismological	 equipment	 (Sousa-	Lima,	
Fernandes,	Norris,	&	Oswald,	2013),	commercial	acoustic	sensors	are	
now	comparable	to	camera	traps	in	durability	and	user-	accessibility	
(Figure	1a).	 Improved	 battery	 life	 and	 storage,	 on-	board	metadata	
collection	and	programmable	schedules	allow	for	extended	autono-
mous	deployments	with	flexible	sampling	regimes	(Aide	et	al.,	2013;	
Baumgartner	 et	al.,	 2013).	 However,	 hardware	 costs	 have	 limited	
scalability,	with	ubiquitous	models	such	as	Wildlife	Acoustics	Song	
Meters	 often	 substantially	 more	 expensive	 than	 equivalent-	spec	
camera	traps.	When	synchronous	multisensor	surveys	are	unneces-
sary,	one	common	solution	 is	 repeated	redeployment	of	a	handful	
of	sensors,	for	example,	the	Norfolk	Bat	Survey	loan	out	ultrasonic	
detectors	to	hundreds	of	volunteers	(Newson	et	al.,	2015).

Looking	 forward,	emerging	open-	source,	microcomputer-	based	
sensors	 are	 significantly	 cheaper	 than	 commercial	 alternatives	
(Sethi,	 Ewers,	 Jones,	Orme,	&	 Picinali,	 2018;	Whytock	&	Christie,	
2017).	 For	 instance,	 the	AudioMoth	 can	 be	mass-	produced	 to	 re-
duce	unit	cost	to	around	US$30	(Hill	et	al.,	2018),	thereby	drastically	
lowering	the	initial	financial	barriers	to	large	multisensor	surveys,	al-
though	maintenance	costs	(e.g.,	regular	replacement	of	batteries	and	
SD	cards)	may	substantially	increase	in	larger	projects.	Furthermore,	
in	some	cases	the	use	of	 inexpensive	components	 (e.g.,	microelec-
tromechanical	 systems	 (MEMS)	microphones)	might	 involve	 trade-	
offs	 between	 sensor	 cost	 and	 data	 quality,	 for	 example,	 if	 these	
show	inconsistent	frequency	response,	lower	signal-	to-	noise	ratios,	
or	are	vulnerable	to	environmental	damage.	A	critical	open	question	
concerns	how	much	data	quality	can	be	sacrificed	without	compro-
mising	 the	 ability	 to	 derive	 sufficient	 information	 from	 audio	 (i.e.,	
accurate	species	identification)	(e.g.,	Figure	2).	Addressing	this	ques-
tion	requires	comparative	analyses	of	data	collected	simultaneously	
with	different	sensor	models	(Adams,	Jantzen,	Hamilton,	&	Fenton,	
2012),	 and	 the	 answer	may	 vary	 taxonomically	 since	 certain	 spe-
cies	 are	 intrinsically	 harder	 to	 distinguish	 acoustically	 than	 others	
(see	below	in	“Automated sound identification”)	(Kershenbaum	et	al.,	
2014).

3.2 | Survey design and data standardisation

Understanding	the	comparability	of	audio	data	collected	using	dif-
ferent	 sensor	models	 and	 sampling	protocols,	 across	different	 en-
vironments,	 is	 an	 ongoing	 challenge	 (Figure	1b)	 (Browning,	 Gibb,	
Glover-	Kapfer,	&	 Jones,	 2017).	As	well	 as	 transect	 surveys	 (Jones	
et	al.,	 2013),	 PAM	 studies	 now	 commonly	 deploy	 static	 sensors	
(analogous	 to	 camera	 traps)	 either	 standalone,	 in	multisensor	 net-
works,	or	in	linked	arrays	to	allow	for	sound	localisation	(reviewed	in	
Blumstein	et	al.,	2011).	The	most	appropriate	combination	of	sensor	



4  |    Methods in Ecology and Evoluon GIBB et al.

TABLE  1 Ecological	applications	of	passive	acoustic	monitoring

Analysis Data type Example result Example applications Key challenges

Occupancy Presence/
absence,	single	
species

Species	inventories	(MacSwiney	
G	2008).	Spatial	trends	in	
species	occupancy	(e.g.,	
endangered	or	data-	deficient	
species)	and	relationship	with	
environmental	covariates	
(Campos-	Cerqueira	&	Aide,	
2016;	Kalan	et	al.,	2015)

Minimising	error	rates	in	
species	call	ID

Abundance/
density	
estimation

Spatially	and	
temporally	
explicit	
detection	
counts,	single	
species

Estimating	density	and	
abundance	of	monitored	
species,	and	relationship	to	
environmental	covariates	(Lucas	
et	al.,	2015;	Marques	et	al.,	
2013)

Minimising	error	rates	in	
species	call	ID.	
Individuals	cannot	be	
identified,	so	abundance	
estimates	must	account	
for	nonindependence	of	
detected	calls

Temporal 
abundance 
trends

Detection	counts,	
single	species	
(per	replicate	
survey)

Monitoring	endangered	or	
indicator	species	(Jones	et	al.,	
2013).	Estimating	abundance	
trends	from	multiyear	
monitoring	data	(e.g.,	general-
ised	additive	models,	Barlow	
et	al.	2015)

Minimising	error	rates	in	
species	call	ID.	Difficult	
to	estimate	the	true	
relationship	between	
detection	rate	and	
animal	abundance	from	
acoustic	data	only

Spatial/temporal	
behaviour	
trends

Detection	counts	
of	different	
behaviours,	
single	species

Modelling	relationship	between	
behaviour,	habitat	covariates	
and/or	the	acoustic	environ-
ment	(e.g.,	anthropogenic	noise)	
(Wrege	et	al.,2017)

Minimising	error	rates	in	
species	and	behavioural	
call	ID.	Poor	availability	
of	automated	tools	for	
differentiating	acoustic	
behaviours

Phenology/
activity	
patterns	
(species)

Temporally 
explicit	
detection	record,	
single	species

Monitoring	circadian	and	
seasonal	trends	in	behaviour,	
e.g.,	migration	timing	
(Petrusková	et	al.,	2016)

Minimising	error	rates	in	
species	call	ID

(Continues)
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type	and	survey	design	will	depend	on	a	study’s	 taxonomic	 focus,	
environmental	realm	(terrestrial	or	marine),	spatial	scale,	and	objec-
tives	(Figure	1;	Table	1)	(Van	Parijs	et	al.,	2009),	but	the	advantages	

and	 disadvantages	 of	 different	 acoustic	 survey	 designs	 are	 often	
poorly	understood.	For	example,	it	is	mostly	unknown	whether	cer-
tain	subsets	of	species	are	systematically	over-		or	underrepresented	

TABLE  1  (Continued)

Analysis Data type Example result Example applications Key challenges

Species	richness Presence/
absence,	
multiple	species

Relationships	between	species	
richness	and	habitat	covariates

Automated	call	ID	tools	
and	reference	call	
libraries	are	currently	
unavailable	for	most	taxa	
and	regions

Acoustic	
community	
diversity

Acoustic	indices	
(e.g.,	complexity,	
entropy,	
diversity,	NDSI)

Measuring	spatiotemporal	trends	
in	acoustic	indices	as	proxies	for	
community	diversity,	e.g.,	
relationship	between	indices	
and	habitat,	or	community	
vocalising	phenology	(Nedelec	
et	al.,	2015;	Sueur	et	al.,	2014)

Relationships	between	
index	values	and	
community	diversity	
poorly	understood.	
Indices	are	strongly	
sensitive	to	variation	in	
nonbiotic	sound	(e.g.,	
from	anthropogenic	
sources)

Environmental	
sound

Metrics	of	sound	
pressure	and	
spectral	density;	
also	acoustic	
indices	(e.g.,	
NDSI)

Measuring	the	acoustic	
environment	(e.g.,	anthropo-
genic	sound)	and	relationships	
with	wildlife	abundance	and	
behaviour	(Merchant	et	al.,	
2015;	Pirotta	et	al.,	2015)

More	complex	metrics	
(i.e.,	acoustic	indices)	
may	be	sensitive	to	
variation	in	different	
sound	types	(e.g.,	
weather)

Intraspecific	
individual 
identification

Detection	counts,	
identified	to	
individual by 
differences	in	
call	structures	or	
repertoire

Study	of	individual	call	reper-
toires,	social	behaviour,	or	
facilitating	density	estimation,	
e.g.,	in	birds	and	cetaceans	
(King	et	al.,	2013;	Petrusková	
et	al.,	2016)

Currently	not	possible	for	
most	species,	due	to	
limited	reference	data	
and/or	poor	knowledge	
of	individual	variation	in	
calls/repertoire

Large	or	
real-	time	
sensor	network

Detection	counts,	
collated	or	
transmitted	from	
multiple	sensors

Seasonal	and	spatial	distributions	
of	species	or	behaviour	(Davis	
et	al.,	2017).	Real-	time	
monitoring	of	species	occur-
rence	or	anthropogenic	activity	
(Astaras	et	al.,	2017)

Costs	of	data	storage	and	
transmission	infrastruc-
ture.	For	real-	time	
monitoring,	patchy	
availability	of	automated	
analysis	tools	and	data	
transmission	capacity
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by	different	survey	techniques,	as	recently	shown	for	rare	bat	spe-
cies	when	using	mobile	transects	(Braun	de	Torrez,	Wallrichs,	Ober,	
&	McCleery,	 2017).	 Equally,	 while	 transects	 or	 sparsely	 deployed	
static	 sensors	 may	 suffice	 for	 occupancy	 or	 activity	 estimation,	
modelling	abundance,	activity	or	space-	use	at	 finer	scales	may	re-
quire	denser	networks	of	calibrated	static	sensors,	often	combined	
with	additional	parameters	such	as	species	call	detection	distances	
(Jaramillo-	Legorreta	et	al.,	2016;	Lucas	et	al.,	2015).

Sound	waves	attenuate	as	they	travel	through	the	environment,	
until	at	a	certain	distance	from	the	caller	they	are	no	longer	detect-
able	above	ambient	background	noise.	This	distance	varies	depend-
ing	 on	 the	 sound’s	 amplitude	 and	 frequency	 (higher	 frequencies	
attenuate	more	rapidly),	the	environmental	medium	(sound	velocity	
in	seawater	is	over	four	times	greater	than	in	air),	the	caller’s	position	
relative	to	the	sensor	(e.g.,	differences	in	depth	underwater)	and	en-
vironmental	 features	 such	 as	 vegetation,	 topography,	 bathymetry,	
temperature,	 and	pressure	 (Farcas,	Thompson,	&	Merchant,	2016)	
(Supporting	 Information	Appendix	S1).	Sounds	can	also	be	masked	
by	nontarget	sound,	from	anthropogenic	sources	as	well	as	other	vo-
calising	animals.	The	effective	sampling	area	around	an	acoustic	sen-
sor	therefore	varies	among	species	and	call	types,	and	across	space	
and	time	(Figure	3).	If	unaccounted	for,	any	resulting	detection	biases	
(e.g.,	towards	animals	that	call	at	higher	amplitudes	and/or	lower	fre-
quencies)	may	cause	biased	population	or	diversity	estimates.

Although	 previously	 often	 overlooked	 in	 the	 PAM	 literature,	
there	are	now	increasing	efforts	to	systematically	quantify	sources	
of	bias	and	improve	survey	standardisation.	These	 include	sensor	
calibration	guidelines	(Merchant	et	al.,	2015),	metadata	standards	
(Roch	 et	al.,	 2016),	 assessing	 the	 efficacy	 of	 sampling	 designs	
(Braun	 de	 Torrez	 et	al.,	 2017;	 Froidevaux,	 Zellweger,	 Bollmann,	
&	 Obrist,	 2014;	 Van	 Parijs	 et	al.,	 2009),	 quantifying	 sensitivity	

differences	between	sensor	models	and	over	time	due	to	environ-
mental	degradation	(Adams	et	al.,	2012;	Merchant	et	al.,	2015),	and	
quantifying	 effects	 of	 sensor	 proximity	 to	 habitat	 features	 (e.g.,	
vegetation,	water	surface,	topography)	on	sound	detection	(Darras,	
Pütz,	Fahrurrozi,	Rembold,	&	Tscharntke,	2016;	Farcas	et	al.,	2016).	
Ultimately,	these	efforts	should	facilitate	more	robust,	data-	driven	
approaches	to	analysing	large,	multisensor	acoustic	datasets,	which	
currently	tend	to	assume	constant	species	detectability	over	space	
and	time	(e.g.,	Davis	et	al.,	2017;	Newson	et	al.,	2015).

3.3 | Trade- offs in audio recording and data storage

During	digital	sound	recording,	incoming	sound	waves	are	transduced	
into	an	electrical	signal	 that	 is	 recorded	at	a	specified	sampling	rate	
(in	Hz)	and	bit-	depth	(number	of	bits	per	sample).	These	parameters	
determine	 a	 recording’s	 frequency	 (pitch)	 and	 amplitude	 (volume)	
resolution,	with	much	 higher	 sampling	 rates	 required	 to	 revolve	 ul-
trasonic	frequencies	(those	above	human	hearing	range;	>20,000	Hz)	
compared	 to	 audible	 range	 frequencies	 (20–20,000	Hz)	 (Supporting	
Information	Appendix	S1).	The	conventional	sampling	rate	for	audible	
sound	 (44.1	kHz)	 produces	 relatively	manageable	 file	 sizes	 (c.	 5	MB	
per	minute	in	16bit	mono),	but	recording	full-	spectrum	ultrasound	in	
bat	and	cetacean	surveys	 (sampling	 rates	often	>200	kHz)	produces	
very	 large	 files,	 resulting	 in	 a	 trade-	off	 between	 data	 quality	 and	
storage	capacity.	Some	ultrasound	detectors	use	 less	data-	intensive	
recording	 methods	 based	 on	 frequency	 division,	 which	 divide	 the	
incoming	 signal	 frequency	by	a	 specified	 factor;	 their	 lower	 storage	
requirements	 may	 suit	 extended	 or	 remote	 deployments,	 provided	
sufficient	 information	 can	 be	 derived	 from	 the	 data	 (e.g.,	 Jaramillo-	
Legorreta	 et	al.,	 2016).	 However,	 resulting	 losses	 of	 frequency	 and	
amplitude	 information	 can	 impact	 the	discrimination	of	 species	 and	

F IGURE  2 Example	comparison	of	recordings	between	sensor	models.	Spectrograms	show	simultaneous	ultrasonic	recordings	from	
two	co-	deployed	sensors:	a	commercial	device	with	electret	microphone	(Batlogger	M,	Elekon	AG)	(a),	and	a	low-	cost	model	with	MEMS	
microphone	(AudioMoth)	(b).	Spectrograms	show	time	(x-	axis),	frequency	(y-	axis),	and	amplitude	on	a	linear	colour	scale	(amplitude	
normalised	with	peak	at	0	dB,	values	below	−30	dB	shown	in	black	for	visualisation).	Bat	echolocation	calls	are	bright	patches	between	20	
and	60	kHz.	The	comparison	highlights	differences	in	frequency	sensitivity,	with	higher	frequencies	more	consistently	resolved	in	(a),	and	
larger	amounts	of	low-		to	midrange	background	noise	in	(b)

(a)

(b)
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behaviours	(Adams	et	al.,	2012;	Walters	et	al.,	2013).	In	future,	these	
analytical	 tools	may	become	 less	sensitive	to	recording	method,	but	
currently	ensuring	minimal	information	loss	during	recording	and	stor-
age	 (Supporting	 Information	 Appendix	S1)	 both	 facilitates	 species	
identification	 (Walters	et	al.,	2012)	and	 futureproofs	 the	data	by	al-
lowing	for	later	reanalysis	with	improved	tools.

Crucially,	 recording	 and	 storing	 audio	 at	 sufficient	 quality	
(Figure	1c),	 alongside	detailed	metadata	on	surveys,	 sensor	 type	
and	recording	parameters,	also	provides	opportunities	to	address	
additional	questions.	For	example,	a	recent	study	collated	multi-
year	hydrophone	data	to	estimate	the	distribution	of	the	critically	
endangered	North	Atlantic	 right	whale	Eubalaena glacialis	 (Davis	
et	al.,	2017).	Leveraging	decades	of	PAM	survey	data	will	require	
collaborative	development	and	maintenance	of	web	infrastructure	
for	the	collation	and	public	archiving	of	massive	(multi-	gigabyte	to	
petabyte)	 environmental	 audio	 datasets	 (e.g.,	 https://ngdc.noaa.
gov/mgg/pad/).	Another	possible	solution	to	data	capacity	issues	
could	be	to	reduce	the	amount	of	audio	that	is	stored,	for	example,	
by	applying	on-	board	thresholds	or	algorithms	that	only	trigger	re-
cording	when	potential	sounds	of	interest	are	present	(Baumgartner	
et	al.,	2013;	Hill	et	al.,	2018).	Discarding	audio	data	is	scientifically	
undesirable,	but	some	degree	of	prior	filtering	can	prevent	datasets	
becoming	unmanageably	 large,	and	combined	with	wireless	data	
transmission	(Aide	et	al.,	2013)	could	facilitate	real-	time	ecological	 
monitoring	and	reporting.

4  | DETEC TING AND CL A SSIF YING 
ACOUSTIC SIGNAL S WITHIN AUDIO 
DATA SETS

For	 studies	 focusing	 on	 specific	 species	 or	 taxonomic	 groups,	
target	 sounds	 must	 be	 identified	 from	 recordings	 (Aide	 et	al.,	
2013;	 Salamon	 &	 Bello,	 2015),	 which	 requires	 pipelines	 to	 pro-
cess	sound	files	and	metadata	and	output	useful	annotations	(e.g.,	

calling	 animal	 species,	 location,	 precise	 date/time)	 (Figure	1d,e).	
Conducted	manually,	this	process	is	time-	consuming	and	subjective,	
and	 it	 is	difficult	 to	quantify	biases	 related	 to	analyst	 knowledge	
level,	 which	 may	 be	 particularly	 problematic	 in	 resource-	limited	
conservation	 settings	 (Heinicke	 et	al.,	 2015;	 Kalan	 et	al.,	 2015).	
Efficient	automated	systems	are	therefore	prerequisites	for	scaling	
up	PAM	studies,	with	innovations	in	machine	learning	increasingly	
applied	 to	bioacoustic	 signal	 recognition	 (Aide	et	al.,	 2013;	Bittle	
&	Duncan,	2013;	Heinicke	et	al.,	 2015;	Walters	 et	al.,	 2012).	The	
complexity	of	environmental	audio	offers	a	useful	real-	world	test	
for	 new	 methods,	 and	 the	 involvement	 of	 the	 machine	 learning	
and	computer	vision	communities	in	PAM	is	driving	analytical	ad-
vances	that	benefit	ecologists	(Goeau,	Glotin,	Vellinga,	Planque,	&	
Joly,	2016;	Marinexplore,	2013;	Stowell	&	Plumbley,	2014;	Stowell,	
Wood,	Stylianou,	&	Glotin,	2016).

4.1 | Developing a pipeline for automated sound 
identification

A	 pipeline	 for	 automatically	 identifying	 target	 sounds	 within	
audio	recordings	(hereafter	referred	to	as	“automated sound iden-
tification” or “auto-ID”)	 involves	 several	 stages	 (Figure	4).	 Audio	
waveforms	 are	 commonly	 preprocessed	 to	 recover	 frequency	
information	 and	 produce	 a	 time-	frequency-	amplitude	 repre-
sentation	 (spectrogram)	 (Figure	4a,b),	 usually	 via	 Fourier	 analy-
sis	 or	 similar	 techniques	 (Supporting	 Information	 Appendix	S1).	
Relevant	 sounds	 must	 first	 be	 detected,	 that	 is,	 located	 in	 time	
within	the	recording	(a	task	sometimes	alternatively	termed	“seg-
mentation”)	(Figure	4c),	using	methods	ranging	in	complexity	from	
simple	thresholding	to	complex	statistical	models	(Table	2).	Next,	
detected	 sounds	 are	 typically	 classified	 to	 a	 relevant	 category	
(e.g.,	 species,	 call	 type)	 (Figure	4d,e)	 based	 on	 a	 combination	 of	
spectro-	temporal	features	extracted	from	the	sound.	These	fea-
tures	may	 be	 generic	 (e.g.,	Mel-	frequency	 cepstral	 coefficients)	
(Muda,	Begam,	&	Elamvazuthi,	2010),	but	are	often	hand-	crafted	

F IGURE  3 The	effects	of	distance	from	sensor,	call	amplitude,	and	habitat	clutter	on	vocalising	animal	detectability.	Sound	emitted	
within	the	detection	space	(yellow	radius)	of	a	sensor	(black	circle)	are	successfully	recorded	(a),	whereas	sounds	outside	this	radius	are	
missed	(b).	Habitat	clutter	causes	acoustic	interference,	particularly	for	higher-	frequency	sounds	(e.g.,	ultrasonic	echolocation),	and	may	
decrease	detection	probability	(b).	Figure	modified	with	permission	from	Browning	et	al.,	(2017)

https://ngdc.noaa.gov/mgg/pad/
https://ngdc.noaa.gov/mgg/pad/
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to	facilitate	species	discrimination	(e.g.,	peak	frequency,	call	dura-
tion,	 peak	 amplitude)	 (Baumgartner	&	Mussoline,	 2011;	Walters	
et	al.,	2012)	(Figure	4d).	Sounds	are	classified	using	either	super-
vised	(previously	trained	on	expert-	labelled	sound	libraries)	or	un-
supervised	 (based	 on	 the	 structure	within	 the	 data)	 algorithms,	
which	return	the	estimated	likelihood	that	a	sound	belongs	to	its	
assigned	category	(Table	2).

Although	methods	are	fast	improving,	poor	or	variable	accuracy	
of	auto-	ID	tools	 remains	a	major	 issue.	 In	particular,	 the	detection	
stage	presents	formidable	difficulties	 (Stowell	et	al.,	2016).	 In	real-	
world	 PAM	 audio	 this	 process	 frequently	 involves	 distinguishing	
large	numbers	of	spectrally	and	temporally	overlapping	calls,	emit-
ted	 by	 multiple	 vocalising	 species	 in	 acoustically	 heterogeneous	
settings	(e.g.,	birds	in	the	dawn	chorus,	swarming	bats),	which	is	an	

F IGURE  4 An	automated	sound	
detection	and	classification	pipeline.	
Frequency	information	is	recovered	
from	the	sound	waveform	(a),	generating	
a	time-	frequency	representation	
(spectrogram,	with	amplitude	shown	as	
colour	intensity)	(b).	Sounds	of	interest	
are	detected	(c),	features	are	extracted	
(d),	then	calls	are	classified	to	a	category	
(species	and	call	type,	here	either	bat	
echolocation	or	social	calls)	(e).	Figure	
modified	with	permission	from	(Browning	
et	al.,	2017).	 
Photo	©	Hugh	Clark/www.bats.org.uk,	
reproduced	with	permission
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extremely	 challenging	 task	 for	most	 extant	 algorithms.	Nontarget	
environmental,	 biotic,	 and	 anthropogenic	 sounds	 can	mask	 target	
sounds	 or	 generate	 false	 positives	 (Heinicke	 et	al.,	 2015;	 Salamon	
&	Bello,	2015;	Stowell,	 Stylianou,	Wood,	Pamuła,	&	Glotin,	2018),	
although	there	is	evidence	that	prior	noise	reduction	filtering	can	im-
prove	accuracy	(reviewed	in	Stowell	et	al.,	2016).	Even	when	detec-
tion	precision	is	high	(few	false	positives),	state-	of-	the-	art	methods	
regularly	fail	to	distinguish	faint,	transient	or	partially	masked	calls,	
leading	to	high	false-	negative	rates	 (low	recall)	 (Digby	et	al.,	2013;	
Goeau	 et	al.,	 2016).	 At	 the	 classification	 stage,	 robust	 feature	 ex-
traction	is	crucial	to	classification	accuracy,	but	is	similarly	sensitive	
to	factors	including	caller	distance,	background	noise,	and	temporal	
overlap	between	calls	(Stowell	&	Plumbley,	2014).	Species	classifica-
tion	may	be	intrinsically	more	difficult	for	taxa	with	highly	variable	
vocal	repertoires	(e.g.,	birds,	cetaceans)	relative	to	those	with	more	
intraspecifically	 consistent	 call	 structures	 (e.g.,	 bat	 echolocation	
calls)	(Kershenbaum	et	al.,	2014;	Walters	et	al.,	2012).	Classification	

may	be	further	complicated	by	ecological	context,	for	example,	dif-
ferences	in	vocalising	behaviour	in	response	to	environment	or	con-
specifics,	or	the	co-	occurrence	of	species	with	similar	call	structures,	
such	as	bats	of	the	genus	Myotis	or	sympatric	right	and	humpback	
whales	(Van	Parijs	et	al.,	2009;	Walters	et	al.,	2012).

The	 often	 substantially	 poorer	 performance	 of	 detection	
and	classification	algorithms	on	 target	audio	 recorded	 in	novel	
contexts	(e.g.,	difficult	sensor	models	or	more	background	noise	
than	 the	 training	 data),	 is	 a	 critical	 emerging	 problem	 as	 data	
collection	 capacities	 continue	 to	 grow	 (Stowell	 et	al.,	 2018).	
In	 ecology,	 auto-	ID	 tools	 are	 commonly	 developed	 for	 study-	
specific	 objectives	 and	 trained	 on	 data	 representative	 of	 the	
actual	 survey	 dataset,	 thereby	 avoiding	 this	 issue	 of	 transfer-
ability	 (e.g.,	 Campos-	Cerqueira	 &	 Aide,	 2016;	 Heinicke	 et	al.,	
2015).	 However,	 algorithm	 development	 is	 time-	consuming	
and	 prohibitively	 complex	 for	 nonexpert	 users.	 Both	 propri-
etary	 (e.g.,	 Raven	 Pro,	 Avisoft,	 Kaleidoscope,	 ARBIMON)	 and	

TABLE  2 Signal	detection	and	classification	techniques	commonly	used	in	bioacoustic	analysis

Method Application Summary Advantages Disadvantages Example references

Thresholding Detection Detection	occurs	when	
energy	within	specified	
frequency	band(s)	exceeds	
a	specified	threshold

Computationally	
inexpensive;	does	
not	require	large	
training	datasets

Often	sensitive	to	
nontarget	back-
ground	noise	and	
signal	overlap

Digby	et	al.,	2013

Spectrogram	
cross-	correlation

Detection,	
classification

Detection	occurs	when	
correlation	coefficient	
against	a	template	
spectrogram	exceeds	a	
specified	value	(e.g.,	0.9)

Computationally	
inexpensive;	does	
not	require	large	
training	datasets

Relies	on	sufficiently	
representative	
template	data

Aide	et	al.,	2013

Hidden	Markov	
models

Detection,	
classification

Probabilistically	infers	
whether	a	signal	of	interest	
is	present,	based	on	an	
underlying	multistate	
model

Incorporates	temporal	
detail	on	signal/
sequence

Complex	for	
nonexperts	to	
develop.	Requires	
sufficient	training/
reference	data

Zilli,	Parson,	Merrett,	
&	Rogers,	2014

Supervised	learning	
with	prior	feature	
extraction	(e.g.,	
support	vector	
machines,	random	
forest)

Classification Supervised	algorithms	
classify	unknown	signals	
based	on	their	similarity	to	
previously	learned	training	
data	(expert-	verified	call	
libraries)

Can	be	trained	on	
large	and	varied	
reference	datasets

Poor	availability	of	
verified	call	libraries	
for	many	taxa.	
Feature	extraction	
methods	are	often	
noise-	sensitive

Bittle	&	Duncan,	
2013;	Walters	et	al.,	
2012

Unsupervised	
learning	(e.g.,	
clustering	
algorithms)

Classification Groups	signals	based	on	the	
similarity	of	their	features,	
using	unsupervised	
(clustering)	algorithms

Does	not	require	
training	data,	as	
clustering	is	based	on	
variation	within	the	
survey	dataset

Does	not	leverage	
prior	knowledge,	
and	clusters	must	
subsequently	be	
identified	to	a	useful	
category	(e.g.,	
species)

Pirotta	et	al.,	2015

Supervised	learning	
without	prior	
feature	extraction	
(e.g.,	convolutional	
neural	networks)

Detection,	
classification

Signals	detected	and	
classified	based	on	
similarity	to	a	learned	
training	dataset

Distinguishing	
features	learned	
directly	from	
spectrogram	data,	so	
bypasses	noise-	
sensitive	feature	
extraction	stage

Sensitive	to	
overfitting	to	
training	data,	so	
requires	very	large	
training	datasets	to	
account	for	
within-	class	
variability	and	
variable	background	
sound

Goeau	et	al.,	2016;	
Mac	Aodha	et	al.,	
2018
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open-	source	 software	 or	 freeware	 (e.g.,	 PAMGUARD,	 LFDCS,	
iBatsID,	 Tadarida)	 (Aide	 et	al.,	 2013;	 Bas,	 Bas,	 &	 Julien,	 2017;	
Baumgartner	&	Mussoline,	2011;	Gillespie	et	al.,	2009;	Walters	
et	al.,	 2012)	 offer	 a	 growing	 range	 of	 inbuilt	 auto-	ID	 tools	 for	
large	 taxonomic	 groups	 and	 geographical	 regions.	 Although	
user-	friendly,	their	transferability	to	novel	datasets	remains	un-
clear,	and	there	are	clear	risks	of	relying	on	costly,	closed-	source	
tools	whose	 underlying	methods	 are	 poorly	 reported.	 Looking	
forward,	 an	 achievable	priority	 is	 the	 community	development	
and	 adoption	 of	 gold	 standard,	 publicly	 archived	 bioacoustic	
sound	libraries,	to	use	as	benchmarks	for	comparative	testing	of	
new	and	closed-	source	algorithms.

PAM	 workflows	 therefore	 involve	 a	 time-	accuracy	 trade-	off:	
manual	processing	is	often	most	accurate	but	can	be	subjective	and	
slow,	whereas	fully	automated	processing	is	much	faster	but	error-	
prone	(Digby	et	al.,	2013).	Currently,	large	PAM	analyses	are	usually	
semi-	automated	 at	 best,	 involving	 regular	 manual	 cross-	checking	
(Campos-	Cerqueira	&	Aide,	2016;	Kalan	et	al.,	2015)	and	resolving	
ambiguous	 classifications	 using	 expert	 opinion	 or	 rules	 of	 thumb	
(e.g.,	selecting	the	most	likely	species	based	on	other	calls	 in	close	
temporal	 proximity).	 Newer	 machine	 learning	 techniques	 that	 ac-
count	 for	 other	 surrounding	 calls	 (e.g.,	 recursive	 neural	 networks)	
could	facilitate	the	automation	of	this	process.	Current	auto-	ID	sys-
tems	are	nonetheless	improving	processing	efficiency,	for	example,	
by	 filtering	out	detections	below	a	minimum	probability	 threshold	
(adjustable	depending	on	study	objectives)	to	reduce	the	volume	of	
data	for	manual	inspection.

4.2 | Emerging innovations in sound identification

Looking	 forward,	 several	 emerging	 methods	 are	 substantially	
improving	 detection	 and	 classification	 accuracies	 by	 learning	
representations	 from	 spectrogram	 data,	 such	 as	 unsupervised	
feature	 extraction	 (Salamon	 &	 Bello,	 2015;	 Stowell	 &	 Plumbley,	
2014)	 and	 dynamic	 time	 warping	 based	 feature	 representations	
(Stathopoulos,	Zamora-	Gutierrez,	 Jones,	&	Girolami,	2017).	Deep	
convolutional	 neural	 networks	 (CNNs)	 are	 particularly	 promising,	
since	these	can	learn	discriminating	spectro-	temporal	information	
directly	 from	 annotated	 spectrograms	 (bypassing	 a	 separate	 fea-
ture	extraction	stage),	 improving	 their	 robustness	 to	sound	over-
lap	 and	 caller	 distance	 (Goeau	 et	al.,	 2016)	 (Figure	4d).	 In	 recent	
tests,	CNNs	have	markedly	outperformed	alternative	methods	on	
detection	and	classification	of	biotic	and	anthropogenic	sounds	in	
urban	recordings	(Fairbrass	et	al.,	2018;	Salamon	&	Bello,	2016)	and	
animal	calls	in	noisy	monitoring	datasets	(Goeau	et	al.,	2016;	Mac	
Aodha	et	al.,	2018;	Marinexplore,	2013).	Their	performance	in	more	
complex	tasks	that	involve	distinguishing	multiple	overlapping	vo-
calisations	(e.g.,	songs	in	the	dawn	chorus)	has	not	yet	been	tested,	
although	 their	 success	 in	 similarly	 challenging	 computer	 vision	
and	 individual	 human	 voice	 recognition	 tasks	 is	 a	 promising	 sign	
(e.g.,	 Lukic,	Vogt,	Dürr,	&	Stadelmann,	2016).	However,	 currently	
such	 applications	 in	 ecology	 are	 constrained	 by	 CNN	 sensitivity	
to	 overfitting	 to	 training	 data,	 and	 the	 consequent	 requirement	

for	 very	 large	 training	 datasets	 that	 represent	 natural	 variability	
in	species	call	 repertoires,	background	sound,	and	caller	distance	
(Krause	et	al.,	2016;	Russakovsky	et	al.,	2015).	Although	more	ac-
cessible	for	image	or	voice	classification	(e.g.,	using	online	images	
or	audio)	(Krause	et	al.,	2016),	very	few	such	datasets	exist	for	en-
vironmental	sound,	since	the	practical	difficulty	of	reference	data	
collection	means	that	verified	wildlife	call	libraries,	when	available,	
are	 typically	 small	 in	 size	and	 lack	variability	 in	 call	 type,	 record-
ing	quality,	and	acoustic	environment.	Some	studies	have	partially	
addressed	this	issue	by	augmenting	training	data	with	background	
noise	 to	 simulate	 different	 distances	 and	 acoustic	 environments	
(Salamon	 &	 Bello,	 2016).	 Online	 data	 labelling	 projects	 such	 as	 
Bat	 Detective	 (www.batdetective.org)	 and	 Snapshot	 Serengeti	
(www.snapshotserengeti.org)	 have	 also	 involved	 citizen	 scien-
tists	 in	annotation	of	CNN	training	data	 (Mac	Aodha	et	al.,	2018;	
Norouzzadeh	et	al.,	2017).

Further	 research	 to	 improve	 the	 situation	 could	 include	 the	de-
velopment	of	noise-	robust	auto-	ID	methods	that	perform	well	even	
with	small	and	variable	quality	training	datasets	(e.g.,	Kaewtip,	Alwan,	
O’Reilly,	&	Taylor,	2016),	and	generalised	detection	algorithms	for	en-
tire	taxonomic	groups	(Baumgartner	&	Mussoline,	2011;	Mac	Aodha	
et	al.,	2018)	 that	could	subsequently	be	coupled	 to	 regional	 species	
classifiers.	Additionally,	emerging	low-	shot	and	zero-	shot	visual	learn-
ing	approaches	aim	to	learn	classification	models	from	very	few	exam-
ples	of	a	class	of	interest,	reducing	the	need	for	large	training	datasets	
(e.g.,	Hariharan	&	Girshick,	 2016).	More	 broadly,	 the	 limited	 under-
standing	of	the	transferability	of	extant	auto-	ID	systems	emphasises	
that,	irrespective	of	the	underlying	algorithms,	a	critical	focus	must	be	
on	lowering	the	technical	barriers	to	ecologists	developing	and	testing	
bespoke	tools,	for	example,	via	interactive	machine	learning	software	
(Mac	Aodha	et	al.,	 2014).	 Such	 functionality	 is	beginning	 to	emerge	
in	 bioacoustic	 analysis	 packages	 (e.g.,	 Kaleidoscope,	 ARBIMON,	
Tadarida)	(Aide	et	al.,	2013;	Bas	et	al.,	2017).

4.3 | Sound libraries and training data: 
identifying and filling the gaps

Perhaps	the	most	fundamental	knowledge	gap	for	PAM	is	the	 lim-
ited	 availability	 of	 comprehensive,	 expert-	verified	 species	 call	 da-
tabases	 for	 reference	 and	 training	 data.	 Much	 remains	 unknown	
about	the	intra-		and	interspecific	call	diversity	of	even	well-	studied	
taxa	(Kershenbaum	et	al.,	2014),	and	ground-	truthed	call	databases	
are	difficult	 and	 laborious	 to	 assemble,	 requiring	 the	 collection	of	
high-	quality	audio	recordings	of	animals	identified	to	species	either	
visually	 or	 through	 capture	 (e.g.,	 Zamora-	Gutierrez	 et	al.,	 2016).	
Where	such	verified	datasets	exist	 they	are	biased	towards	verte-
brates	(particularly	cetaceans,	bats,	and	birds),	with	especially	scarce	
resources	 for	 anurans	 and	 invertebrates	 (Lehmann,	 Frommolt,	
Lehmann,	&	Riede,	2014;	Penone	et	al.,	2013)	and	regions	outside	
Europe	 and	 North	 America,	 despite	 the	 urgent	 need	 for	 tools	 to	
facilitate	monitoring	 of	 subtropical	 and	 tropical	 habitats	 (Zamora-	
Gutierrez	et	al.,	2016).	These	gaps	translate	into	equivalent	biases	in	
classifier	availability,	and	to	our	knowledge	no	widely	available	tools	

http://www.batdetective.org
http://www.snapshotserengeti.org
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exist	for	distinguishing	intraspecific	acoustic	behaviours	(e.g.,	social	
from	echolocation	calls	in	cetaceans	and	bats)	(Figure	4e),	although	
machine	learning	methods	have	successfully	been	applied	to	analysis	
of	bat	acoustic	social	behaviour	(Prat	et	al.,	2016).

Filling	these	data	gaps	is	a	priority	for	the	entire	PAM	community,	
which	would	strongly	benefit	from	collaborative	efforts	to	collect	ver-
ified	call	data	for	neglected	taxa	and	regions	(e.g.,	tropical	terrestrial	
biomes).	Additionally,	the	establishment	of	centralised	sound	libraries	
with	consensus	data	and	metadata	standards	(e.g.,	date/time	of	record-
ing,	geographic	location,	recording	parameters,	sensor	position)	(Roch	
et	al.,	2016),	would	improve	the	accessibility	and	comparability	of	ref-
erence	sound	libraries.	Online	databases	such	as	MobySound	(www.
mobysound.org)	and	Watkins	Marine	Mammal	Sound	Database	(www.
whoi.edu/watkinssounds)	 for	marine	mammals,	 and	 Xeno-	Canto	 for	
birds	(www.xeno-canto.org)	highlight	the	benefits	of	adopting	open-	
data	approaches	in	this	area,	offering	rich	(albeit	not	necessarily	stan-
dardised)	training	data	(Mellinger	&	Clark,	2006;	Sayigh	et	al.,	2016).

5  | ACOUSTIC ECOLOGIC AL INFERENCE 
FROM POPUL ATIONS TO COMMUNITIES

5.1 | Inferring population information from acoustic 
data

Following	processing,	a	typical	sound	identification	pipeline	outputs	
a	 spatially	 and	 temporally	 explicit	 record	 of	 species	 call	 detections	
(Figure	1e).	 Population	 inference	 from	 PAM-	derived	 species	 occur-
rence	or	count	data	presents	 its	own	difficulties,	since	acoustic	sur-
veys	 involve	 multiple	 sources	 of	 detection	 uncertainty.	 The	 first	 is	
imperfect	 detectability:	 the	 probability	 of	 successfully	 detecting	 a	
vocalising	animal	depends	on	its	distance	from	the	sensor,	vocalising	
behaviour,	 call	 parameters,	 and	 site-	specific	 environmental	 factors	
(Darras	et	al.,	2016;	Kéry	&	Schmidt,	2008).	The	second	issue	is	that	
species	 vocalisations	 recorded	 in	 close	 spatial	 or	 temporal	 proxim-
ity	 are	 statistically	 nonindependent	 since	 they	may	 come	 from	 the	
same	individual	(Lucas	et	al.,	2015);	for	example,	detection	rates	may	
be	artificially	inflated	by	individual	animals	vocalising	close	to	a	sen-
sor	 for	 long	 periods.	However,	 acoustic	 identification	 of	 individuals	
is	currently	not	possible	 for	most	 taxa,	and	where	possible	 (e.g.,	 for	
some	birds,	primates,	cetaceans,	and	wolves)	usually	requires	exten-
sive	manual	analysis	(e.g.,	Clink,	Bernard,	Crofoot,	&	Marshall,	2017;	
Petrusková,	 Pišvejcová,	 Kinštová,	 Brinke,	 &	 Petrusek,	 2016;	 Root-	
Gutteridge	 et	al.,	 2014).	 Furthermore,	many	 vocalising	 animals	 pro-
duce	multicall	sequences	(e.g.,	birdsong	phrases,	echolocation	passes)	
which	must	be	merged	 into	discrete	detections	 (Jaramillo-	Legorreta	
et	al.,	 2016;	Newson	 et	al.,	 2015).	 The	 third	major	 source	 of	 uncer-
tainty	 relates	 to	 errors	 in	 automated	 sound	 identification	 (Figure	4)	
(Digby	 et	al.,	 2013).	 Predicted	 detections	 and	 classifications	 below	
a	 suitable	 confidence	 threshold	can	be	 removed	prior	 to	modelling,	
however,	site-	specific	differences	in	false-	positive	and	-	negative	rates	
(e.g.,	due	to	environmental	noise)	may	still	impact	model	estimates.

Statistical	 analyses	 (Figure	1f)	 must	 account	 for	 these	 uncer-
tainties.	For	example,	patch	occupancy	models	are	useful	tools	for	

spatially	explicit	distribution	modelling	with	PAM-	derived	data,	since	
these	incorporate	detection	probability	parameters	that	can	be	es-
timated	from	repeat	surveys	(e.g.,	Campos-	Cerqueira	&	Aide,	2016;	
Kalan	et	al.,	2015).	Also,	the	emergence	of	more	accessible	and	less	
computationally	expensive	Bayesian	inference	methods	for	complex	
hierarchical	 and	 occupancy	 models	 is	 increasingly	 enabling	 multi-
ple	 sources	of	uncertainty	 to	be	 incorporated	 into	 spatiotemporal	
models	(e.g.,	Isaac	et	al.,	2014;	Ruiz-	Gutierrez,	Hooten,	&	Campbell	
Grant,	2016).	Such	frameworks	can	be	extended	to	include,	for	ex-
ample,	 the	 confidence	 associated	 with	 automated	 call	 detections	
and	classifications	(Banner	et	al.,	2018).

A	core	application	of	ecological	survey	data	 is	abundance	and	
population	 trend	 estimation.	 Abundance	 estimation	 from	 PAM	
count	data	 is	difficult	due	 to	 the	 lack	of	a	simple	 relationship	be-
tween	call	 counts	and	animal	density;	 the	 last	decade	has	 seen	a	
growing	 toolbox	 of	 methods	 to	 address	 this	 issue	 (reviewed	 in	
Marques	 et	al.,	 2013).	 Spatially	 explicit	 capture	 recapture	models	
(across	multisensor	 arrays	 and	 networks)	 (Stevenson	 et	al.,	 2015)	
and	other	methods	that	adjust	detected	call	density	by	the	average	
calling	 rate	of	 the	 target	 species	 (Thompson,	Schwager,	&	Payne,	
2010;	 Ward	 et	al.,	 2012)	 have	 been	 shown	 to	 provide	 accurate	
density	 estimates	 when	 validated	 against	 nonacoustic	 methods.	
Another	recent	study	developed	a	generalised	extension	of	a	ran-
dom	 encounter	 model	 (REM)	 originally	 designed	 for	 camera	 trap	
data	 (Lucas	et	al.,	2015).	However,	these	methods	are	often	data-	
intensive,	 requiring	 the	 deployment	 and	 retrieval	 of	 multisensor	
networks	 and	 the	 estimation	 of	 species-	specific	 parameters	 such	
as	detection	distances	and	average	call	rates	(Lucas	et	al.,	2015).	In	
cetacean	studies,	call	rates	are	often	estimated	by	tagging	animals	
with	 acoustic	 loggers	 (Johnson	 &	 Tyack,	 2003),	 but	 in	 terrestrial	
realms	these	remain	too	large	to	ethically	deploy	on	many	species.	
Estimation	of	true	abundance	may	be	best	suited	to	well-	resourced	
projects	with	clear,	species-	focused	objectives,	rather	than	broader	
scope	ecological	monitoring.

Informed	 indices	 of	 abundance	 may	 suffice	 where	 these	 more	
complex	 analytical	methods	 are	 unfeasible.	Detection	 counts	within	
specified	sampling	periods	are	often	used	as	proxies	for	relative	den-
sity	 or	 activity,	 such	 as	 nightly	 bat	 detections	 (Newson	 et	al.,	 2015)	
or	 temporally	 aggregated	 click	 rates	 in	 cetacean	 surveys	 (Jaramillo-	
Legorreta	et	al.,	2016).	Such	approaches	generally	assume	consistent	
detection	between	individuals	and	over	time,	even	though	the	relation-
ship	between	detection	rates	and	relative	abundance	may	vary	widely	
between	 species	 and	habitats	 (Marques	 et	al.,	 2013).	However,	with	
careful	survey	design	and	replication,	these	issues	may	be	less	prob-
lematic	for	estimation	of	broad-	scale	activity	or	occupancy	trends.

5.2 | Acoustic ecological community and 
biodiversity assessment

Moving	 beyond	 a	 species	 focus	 and	 towards	 deriving	 community	
information	 (e.g.,	 species	 diversity)	 from	 PAM	 data	 presents	 the	
challenge	of	classifying	calls	from	multiple,	or	 ideally	all,	vocalising	
species.	 For	 most	 taxa	 and	 geographical	 regions	 this	 is	 currently	

http://www.mobysound.org
http://www.mobysound.org
http://www.whoi.edu/watkinssounds
http://www.whoi.edu/watkinssounds
http://www.xeno-canto.org
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either	 impossible	or	 extremely	 time-	consuming	due	 to	 the	 lack	of	
reference	 data	 and	 auto-	ID	 tools,	which	 emphasises	 the	 need	 for	
acoustic	 biodiversity	 indicators	 (Figure	1g)	 to	 facilitate	 surveys	 of	
data-	deficient	 (often	 highly	 biodiverse)	 regions	 (Harris,	 Shears,	 &	
Radford,	2016).	Monitoring	proposed	indicator	taxa	such	as	bats	or	
orthoptera	offers	one	potential	solution	(Fischer,	Schulz,	Schubert,	
Knapp,	&	Schmoger,	1997;	 Jones	et	al.,	 2013)	but	 their	usefulness	
as	ecological	indicators	is	not	clearly	established.	Recent	years	have	
therefore	seen	the	development	of	soundscape-	based	methods	that	
seek	to	 infer	community	 information	from	a	habitat’s	global	sound	
dynamics	 (Pijanowski,	 Farina,	 Gage,	 Dumyahn,	 &	 Krause,	 2011)	
(Figure	5).	Under	 the	 theme	of	 ecoacoustics,	 various	 summary	 in-
dices	have	been	designed	 to	 facilitate	 comparison	of	 biotic	 sound	
between	sites	and	over	time	(reviewed	in	Sueur	et	al.,	2014).	Most	
involve	calculation	of	power	ratios	between	multiple	frequency	and/
or	time	bins	across	a	recording,	and	thus	are	essentially	more	com-
plex	extensions	of	 conventional	 sound	pressure	and	 spectral	 den-
sity	metrics	(Kasten,	Gage,	Fox,	&	Joo,	2012;	Merchant	et	al.,	2015;	
Pieretti,	Farina,	&	Morri,	2011;	Sueur	et	al.,	2008)	(Figure	5).	Acoustic	
indices	 are	 derived	 from	 the	 theory	 that	 competition	 for	 acoustic	
space	between	sympatric	signalling	animals	drives	the	evolution	of	
signal	 divergence	 (acoustic	 niche	 partitioning),	 and	 therefore	 that	
the	spectro-	temporal	diversity	of	biotic	sound	in	a	habitat	correlates	
with	vocalising	species	diversity	(Pijanowski	et	al.,	2011;	Sueur	et	al.,	
2008).	 For	 example,	 acoustic	 entropy	 and	dissimilarity	 indices	 are	
designed	as	acoustic	analogues	of	classical	α-  and β-	diversity	indices	
(Sueur	et	al.,	2008).

Despite	growing	interest	in	these	methods,	their	results	to	date	
have	been	mixed.	Systematic	 tests	 in	both	 terrestrial	 and	marine	

environments	occasionally	find	correlations	between	acoustic	indi-
ces	and	species	diversity,	suggesting	that	soundscape-	based	met-
rics	can	sometimes	function	as	ecological	indicators	(Gasc,	Pavoine,	
Lellouch,	Grandcolas,	&	Sueur,	2015;	Gasc	et	al.,	2013;	Harris	et	al.,	
2016;	Sueur	et	al.,	2008).	However,	many	indices	are	highly	sensi-
tive	 to	site-	specific	and	temporal	differences	 in	vocalising	animal	
community	composition	and	nontarget	sound	levels	(e.g.,	weather,	
anthropogenic	sound,	other	vocalising	species)	 (Gasc	et	al.,	2015;	
Lellouch,	Pavoine,	Jiguet,	Glotin,	&	Sueur,	2014;	Staaterman	et	al.,	
2017).	 It	 is	 therefore	difficult	 to	directly	 compare	 acoustic	 index	
values	 between	 sites	 and	 surveys,	 which	 limits	 the	 reliability	 of	
indices	 in	 PAM	 studies	 that	 span	 multiple	 localities,	 dates	 and	
habitat	types.	Most	ecoacoustics	studies	to	date	have	focused	on	
relatively	 undisturbed	 habitats	 such	 as	 forests,	where	 anthropo-
genic	sound	may	present	fewer	problems;	 in	contrast,	systematic	
tests	 suggest	 that	 indices	 are	 highly	 sensitive	 to	 heterogeneous	
urban	soundscapes,	limiting	their	suitability	for	monitoring	in	cities	
(Fairbrass,	Rennett,	Williams,	Titheridge,	&	Jones,	2017).	Similarly,	
there	 is	 growing	 interest	 in	 marine	 soundscape	 analysis,	 for	 in-
stance,	 in	studies	of	reef	phenology	(McWilliam,	McCauley,	Erbe,	
&	Parsons,	2017),	the	use	of	acoustic	cues	by	fish	(Simpson	et	al.,	
2008),	 mapping	 biotic	 sound	 across	 oceanic	 habitats	 (Nedelec	
et	al.,	 2015),	 and	 development	 of	 biodiversity	 indicators	 (Sueur	
et	al.,	2014).	However,	these	efforts	are	complicated	by	the	acous-
tic	connectedness	of	underwater	habitats,	with	long-	range	sounds	
and	anthropogenic	noise	potentially	 swamping	 local	 variations	 in	
biotic	sound	(Harris	et	al.,	2016;	McWilliam	&	Hawkins,	2013).

More	fundamentally,	the	theorised	link	between	community	
and	 biotic	 sound	diversity	 remains	 controversial.	 The	 acoustic	

F IGURE  5  Indices	of	biotic	and	environmental	sound.	Conventional	metrics	such	as	power	spectral	density	(ai)	can	measure	the	acoustic	
environment.	Ecoacoustic	indices	range	from	simple	power	ratios	across	broad	frequency	bands	(e.g.,	Normalised	Difference	Soundscape	
Index;	aii)	to	finer-	band	spectral/temporal	diversity	and	entropy	(aiii).	Their	practical	applications	are	limited	by	poor	understanding	of	the	
relationships	between	the	diversity	of	recorded	biotic	sound,	the	diversity	of	vocalising	species,	and	wider	community	diversity	(b)
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niche	 partitioning	 hypothesis	 that	 underpins	 acoustic	 indices	
has	 rarely	 been	 empirically	 tested,	 and	 the	 sensory,	 environ-
mental	 and	 evolutionary	 processes	 that	 structure	 vocalising	
animal	communities	are	poorly	understood	(Tobias	et	al.,	2014).	
It	 remains	unclear	 if	 and	how	 landscape-	scale	biotic	 sound	di-
versity	 relates	 to	 either	 vocalising	 species	 diversity	 or	 wider	
community	diversity,	and	how	this	relationship	varies	taxonom-
ically,	geographically,	and	between	terrestrial	and	marine	realms	
(Figure	5b)	 (Gasc	 et	al.,	 2013;	 Harris	 et	al.,	 2016;	 Sueur	 et	al.,	
2014).	Despite	this	lack	of	clarity,	tools	for	calculation	of	acous-
tic	 indices	 are	 increasingly	 accessible	 in	 bioacoustic	 software	
packages;	 similar	 to	 auto-	ID	 softwares	 their	 outputs	 should	
be	 treated	 critically,	 with	 index	 values	 at	 a	 minimum	 ground-	
truthed	 against	 either	 expert-	labelled	 audio	 subsets	 and/
or	 other	 forms	 of	 survey	 data	 (e.g.,	 Harris	 et	al.,	 2016;	 Sueur	
et	al.,	2008).	If	these	practical	and	theoretical	problems	can	be	
resolved,	 acoustic	 community	 analyses	 promise	 to	 be	 one	 of	
PAM’s	 unique	 ecological	 applications,	 with	 potential	 to	 offer	
rich	 local	 biodiversity	 information	 to	 complement	 landscape	
data	from	satellite	and	aerial	LIDAR	sensing	(Bush	et	al.,	2017).	
For	 now,	 leveraging	 these	 opportunities	will	 likely	 require	 the	
use	of	acoustic	 indices	or	similar	proxies.	Ongoing	work	to	 im-
prove	 these	 prospects	 could	 include	 systematic	 evaluation	 of	
the	performance	of	 indices	across	 taxa	and	habitats	 (including	
tests	 in	well-	characterised,	 low-	diversity	 communities),	 along-
side	 fundamental	 research	 into	 the	 structure	 and	 evolution	of	
acoustic	communities	(Farina	&	James,	2016).

Looking	forward,	newer	machine	learning	methods	may	offer	al-
ternative	means	 to	 tackle	 the	 problem	of	 soundscape	monitoring.	
For	 instance,	 a	 recent	 study	 used	CNNs	 to	 separate	 and	 quantify	
biotic	 and	 anthropogenic	 sound	 in	 urban	 audio,	 thereby	 explicitly	
bypassing	the	issue	of	background	noise	sensitivity	 (although	their	
transferability	to	different	cities	or	environments	remains	unknown)	
(Fairbrass	et	al.,	2018).	Another	promising	avenue	involves	unsuper-
vised	learning	of	acoustic	patterns	directly	from	survey	data.	For	ex-
ample,	Eldridge,	Casey,	Moscoso,	and	Peck	(2016)	used	sparse	coding	
to	isolate	periodic	sound	components	within	bird	chorus	recordings,	
which	they	suggest	may	correlate	with	particular	sound	types	or	spe-
cies	calls.	Although	embryonic,	such	approaches	might	eventually	fa-
cilitate	estimation	of	vocalising	 species	diversity	without	 requiring	
comprehensive	auto-	ID	tools	(although	reference	material	would	be	
required	to	link	unsupervised	classifications	to	species).	It	is	still	un-
clear	whether	this	could	be	feasible,	but	 if	so	 it	would	represent	a	
major	step	towards	broadly	applicable	acoustic	ecological	indicators.

6  | EMERGING AND FUTURE 
OPPORTUNITIES FOR PA SSIVE ACOUSTIC S

Finally,	 we	 outline	 some	 major	 emerging	 opportunities,	 as	 PAM	
moves	 beyond	 proof-	of-	concept	 studies	 towards	 applications	 in	
management	 and	 conservation.	 Until	 recently,	 outcomes-	driven	
acoustic	monitoring	projects	 have	mostly	 occurred	where	PAM	 is	

either	the	only	feasible	approach,	or	provides	clear	advantages	over	
other	methods	despite	higher	costs	(i.e.,	bat	and	cetacean	surveys,	
and	 field	 bioacoustics	 studies).	 However,	 low-	cost	 sensors	 have	
pushed	the	bottlenecks	 into	 the	analysis	and	management	stages,	
and	as	we	have	emphasised,	addressing	these	logistical	and	analyti-
cal	barriers	now	increasingly	requires	collaborative,	community-	led	
efforts.	Marine	 research	 remains	 a	 source	 of	 key	 innovations,	 in-
cluding	auto-	ID	software	development	(Baumgartner	&	Mussoline,	
2011;	Gillespie	et	al.,	2009),	acoustic	sensor	tags	(Johnson	&	Tyack,	
2003),	density	estimation	methods	(Marques	et	al.,	2013),	real-	time	
reporting	(Baumgartner	et	al.,	2013;	http://dcs.whoi.edu/),	and	col-
lation	of	multisource	datasets	(Davis	et	al.,	2017).	Increased	integra-
tion	 between	 marine	 and	 terrestrial	 PAM	 communities	 would	 be	
beneficial	 to	 jointly	addressing	pressing	challenges,	such	as	stand-
ardisation	of	survey	protocols,	establishment	of	publically	archived	
audio	 datasets	 and	 sound	 libraries,	 development	 of	 an	 improved	
theoretical	and	analytical	 framework	for	measuring	vocalising	ani-
mal	 communities,	 and	 research	around	operationalising	PAM	data	
for	 conservation.	 There	 is	 already	 promising	 coordination,	 for	 ex-
ample,	 via	 the	 International	 Society	 of	 Ecoacoustics,	 and	 multi-	
institution	 initiatives	 such	 as	 the	 US	 Northeast	 Passive	 Acoustic	
Sensing	Network	(NEPAN;	Van	Parijs	et	al.,	2015).

Currently,	we	are	seeing	the	arrival	of	massive	acoustic	datasets	
collected	across	research	networks	and	citizen	science	programmes	
(Table	1).	 As	 auto-	ID	 tools	 and	wireless	 data	 transmission	 improve,	
the	 increasing	scope	of	 these	datasets	could	facilitate,	 for	example,	
the	tracking	of	range	shifts	under	climate	change	(Davis	et	al.,	2017),	
long-	term	 studies	 of	 population	 ecology	 and	 habitat	 use	 (Wrege	
et	al.,	 2017),	 year-	on-	year	 tracking	 of	 population	 trends	 (Jaramillo-	
Legorreta	et	al.,	2016),	conservation	planning	and	efficacy	assessment	
(Astaras	 et	al.,	 2017;	Border	 et	al.,	 2017),	 behaviour	 and	phenology	
studies	in	taxa	beyond	birds	and	cetaceans	(Nedelec	et	al.,	2015),	as	
well	as	monitoring	of	species	of	concern	as	ecosystem	services	pro-
viders	(e.g.,	pollinators),	pests,	invasive	species	or	public	health	threats	
(Mukundarajan,	Hol,	Castillo,	Newby,	&	Prakash,	2017).

Looking	 further	 forward,	 emerging	 networked	 sensors	 and	
on-	board	 analysis	 pipelines	 raise	 the	 possibility	 of	 using	 PAM-	
derived	data	for	real-	time	monitoring	and	adaptive	management	
(Table	1).	Detections	derived	from	sensor	networks	can	provide	
highly	 spatially	 and	 temporally	 detailed	 data	 on	 wildlife	 activ-
ity	 (e.g.,	 London’s	Nature-	Smart	 Cities	 bat	monitoring	 network:	
https://naturesmartcities.com).	Real-	time	data	feeds	could,	for	in-
stance,	be	applied	to	adjust	urban	lighting	regimes	to	reduce	im-
pacts	on	bat	activity,	mitigate	human-	wildlife	conflict,	adaptively	
reroute	shipping	traffic	to	avoid	threatened	cetacean	populations	
(Davis	 et	al.,	 2017;	 Van	 Parijs	 et	al.,	 2009),	 or	 report	 on	 illegal	
logging	 or	 hunting	 (Astaras	 et	al.,	 2017,	 Rainforest	 Connection	
https://rfcx.org).	 Beyond	 the	 institutional	 and	 political	 barriers,	
developing	 such	 an	 infrastructure	 would	 still	 face	 substantial	
technical	difficulties,	especially	since	the	ultimate	goal	of	devel-
oping	comprehensive	suites	of	robust	auto-	ID	tools	is	likely	many	
years	 or	 even	 decades	 away.	 Nonetheless,	 these	 possibilities	
represent	exciting	futures	for	a	technology	that,	alongside	other	

http://dcs.whoi.edu/
https://naturesmartcities.com
https://rfcx.org
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sensing	 technologies,	 is	providing	 increasingly	 sensitive	 insights	
into	the	effects	of	human	pressures	on	wildlife	and	ecosystems.
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