21 research outputs found

    Hydrochars as Emerging Biofuels: Recent Advances and Application of Artificial Neural Networks for the Prediction of Heating Values

    Get PDF
    In this study, the growing scientific field of alternative biofuels was examined, with respect to hydrochars produced from renewable biomasses. Hydrochars are the solid products of hydrothermal carbonization (HTC) and their properties depend on the initial biomass and the temperature and duration of treatment. The basic (Scopus) and advanced (Citespace) analysis of literature showed that this is a dynamic research area, with several sub-fields of intense activity. The focus of researchers on sewage sludge and food waste as hydrochar precursors was highlighted and reviewed. It was established that hydrochars have improved behavior as fuels compared to these feedstocks. Food waste can be particularly useful in co-hydrothermal carbonization with ash-rich materials. In the case of sewage sludge, simultaneous P recovery from the HTC wastewater may add more value to the process. For both feedstocks, results from large-scale HTC are practically non-existent. Following the review, related data from the years 2014–2020 were retrieved and fitted into four different artificial neural networks (ANNs). Based on the elemental content, HTC temperature and time (as inputs), the higher heating values (HHVs) and yields (as outputs) could be successfully predicted, regardless of original biomass used for hydrochar production. ANN3 (based on C, O, H content, and HTC temperature) showed the optimum HHV predicting performance (R2 0.917, root mean square error 1.124), however, hydrochars’ HHVs could also be satisfactorily predicted by the C content alone (ANN1, R2 0.897, root mean square error 1.289)

    Correction to: Two years later: Is the SARS-CoV-2 pandemic still having an impact on emergency surgery? An international cross-sectional survey among WSES members

    Get PDF
    Background: The SARS-CoV-2 pandemic is still ongoing and a major challenge for health care services worldwide. In the first WSES COVID-19 emergency surgery survey, a strong negative impact on emergency surgery (ES) had been described already early in the pandemic situation. However, the knowledge is limited about current effects of the pandemic on patient flow through emergency rooms, daily routine and decision making in ES as well as their changes over time during the last two pandemic years. This second WSES COVID-19 emergency surgery survey investigates the impact of the SARS-CoV-2 pandemic on ES during the course of the pandemic. Methods: A web survey had been distributed to medical specialists in ES during a four-week period from January 2022, investigating the impact of the pandemic on patients and septic diseases both requiring ES, structural problems due to the pandemic and time-to-intervention in ES routine. Results: 367 collaborators from 59 countries responded to the survey. The majority indicated that the pandemic still significantly impacts on treatment and outcome of surgical emergency patients (83.1% and 78.5%, respectively). As reasons, the collaborators reported decreased case load in ES (44.7%), but patients presenting with more prolonged and severe diseases, especially concerning perforated appendicitis (62.1%) and diverticulitis (57.5%). Otherwise, approximately 50% of the participants still observe a delay in time-to-intervention in ES compared with the situation before the pandemic. Relevant causes leading to enlarged time-to-intervention in ES during the pandemic are persistent problems with in-hospital logistics, lacks in medical staff as well as operating room and intensive care capacities during the pandemic. This leads not only to the need for triage or transferring of ES patients to other hospitals, reported by 64.0% and 48.8% of the collaborators, respectively, but also to paradigm shifts in treatment modalities to non-operative approaches reported by 67.3% of the participants, especially in uncomplicated appendicitis, cholecystitis and multiple-recurrent diverticulitis. Conclusions: The SARS-CoV-2 pandemic still significantly impacts on care and outcome of patients in ES. Well-known problems with in-hospital logistics are not sufficiently resolved by now; however, medical staff shortages and reduced capacities have been dramatically aggravated over last two pandemic years

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Wearable Textile Antenna with a Graphene Sheet or Conductive Fabric Patch for the 2.45 GHz Band

    No full text
    Textile patch antennas of simple rectangular, triangular, and circular shape, for operation in the 2.4–2.5 GHz free industrial, scientific, and medical (ISM) band, are designed in this paper. Thirty-six patch antenna prototypes have been fabricated by engaging different patch geometries, patch materials, and substrate materials. Each patch antenna is designed after optimization by a genetic algorithm, which evolves the initial dimensions and feeding position of the prototype’s microstrip counterpart to the final optimal geometrical characteristics of the wearable prototype (with the originally selected shape and materials). The impact of the design and fabrication details on antenna performance were thoroughly investigated. Graphene sheet patches were tested against conductive fabric and copper sheet ones, while denim and felt textile substrates were competing. The comparative study between a large number of different graphene, all, and copper textile prototypes, which revealed the excellent suitability of graphene for wearable applications, is the main contribution of this paper. Additional novelty elements are the compact, flexible, and easy-to-fabricate structure of the proposed antennas, as well as the use of state-of-the-art conductive materials and commercially available fabrics and the extensive investigation of many prototypes in various bending conditions. Simulations and measurements of the proposed antennas are in very good agreement. All fabricated prototypes are characterized by flexibility, light weight, mechanical stability, resistance to shock, bending and vibrations, unhindered integration to clothes, low-cost implementation, simple, time-saving, and industry-compatible fabrication process, and low specific absorption rate (SAR) values (computed using rectangular and voxel models); the graphene prototypes are additionally resistant to corrosion, and the circular ones have very good performance under bending conditions. Many antenna prototypes demonstrate interesting characteristics, such as relatively wide bandwidth, adequate gain, firm radiation patterns, coverage of the ISM band even under bending, and very low SAR values. For example, the circular graphene patch (with 55.3 mm diameter attached upon a 165.9 × 165.9 mm) felt substrate CGsF1 prototype accomplishes 109 MHz measured bandwidth, 5.45 dBi gain, 56% efficiency, full coverage of the ISM band under bending, and SAR less than 0.003 W/Kg

    Design and Implementation of Single-Layer 4 × 4 and 8 × 8 Butler Matrices for Multibeam Antenna Arrays

    No full text
    Single-layer 4 × 4 and 8 × 8 Butler matrices (BMs) that operate in the L and S bands are implemented in this paper. Easy-to-fabricate microstrip layout topologies are designed and constructed; the final arrangement of the BMs allows realization without any crossovers. The performance of the networks is evaluated by measuring their frequency response. The return loss (RL) and the isolation are below -15 dB over the operation bandwidth for all structures, whereas the average insertion loss is less than 1 dB for the 4 × 4 BM and does not exceed 3 dB for the 8 × 8 BM. The amplitude imbalance is at most 0.5 dB and 1.5 dB, for the 4 × 4 and the 8 × 8 BMs, respectively. Moreover, multibeam antenna arrays fed by the BMs are constructed. The radiation patterns are measured and compared with theoretical data; a good agreement is achieved. The side lobes are sufficiently low, compared to the theoretical predictions, whereas they are further reduced by applying appropriate excitation schemes to the input ports of the BMs

    An Approach for Modelling Harnesses in the Extreme near Field for Low Frequencies

    No full text
    A key part of every space science mission, in the system-level approach, is the detailed study and modeling of the emissions from transmission lines. Harnesses usually emit electromagnetic fields due to the currents (of common and/or differential modes) that flow on their shields. These fields can be identified via conducted emissions measurements. Relying on the operating frequency, any cable can be considered as a dipole or a traveling-wave antenna. Limited work can be found in the literature regarding modeling methodologies for cable topologies, especially in the low frequency (ELF, SLF, VLF, LF) domain. This work intends to provide perceptions for the precise estimation of harness radiated emissions, consider a mission-specific measurement point (where the sensors are placed), and follow ESA’s recent science mission studies for electromagnetic cleanliness applications. For the low frequencies considered herein, any linear cable path is considered as a point source (infinitesimal dipole) and we evaluate its effect on the calculated electric field extremely close to the source. For such distances, it is shown that the dipole representation is not accurate. To remedy this phenomenon, this article proposes a methodology, which can be easily expanded to complex cable geometry cases

    Data Management and Processing in Seismology: An Application of Big Data Analysis for the Doublet Earthquake of 2021, 03 March, Elassona, Central Greece

    No full text
    On 3 March 2021 (10:16, UTC), a strong earthquake, Mw 6.3, occurred in Elassona, Central Greece. The epicenter was reported 10 km west of Tyrnavos. Another major earthquake followed this event on the same day at Mw 5.8 (3 March 2021, 11:45, UTC). The next day, 4 March 2021 (18:38, UTC), there was a second event with a similar magnitude as the first, Mw 6.2. Both events were 8.5 km apart. The following analysis shows that the previous events and the most significant aftershocks were superficial. However, historical and modern seismicity has been sparse in this area. Spatially, the region represents a transitional zone between different tectonic domains; the right-lateral slip along the western end of the North Anatolian Fault Zone (NAFZ) in the north Aegean Sea plate-boundary structure ends, and crustal extension prevails in mainland Greece. These earthquakes were followed by rich seismic activity recorded by peripheral seismographs and accelerometers. The installation of a dense, portable network from the Aristotle University of Thessaloniki team also helped this effort, installed three days after the seismic excitation, as seismological stations did not azimuthally enclose the area. In the present work, a detailed analysis was performed using seismological data. A seismological catalogue of 3.787 events was used, which was processed with modern methods to calculate 34 focal mechanisms (Mw > 4.0) and to recalculate the parameters of the largest earthquakes that occurred in the first two days

    Data Management and Processing in Seismology: An Application of Big Data Analysis for the Doublet Earthquake of 2021, 03 March, Elassona, Central Greece

    No full text
    On 3 March 2021 (10:16, UTC), a strong earthquake, Mw 6.3, occurred in Elassona, Central Greece. The epicenter was reported 10 km west of Tyrnavos. Another major earthquake followed this event on the same day at Mw 5.8 (3 March 2021, 11:45, UTC). The next day, 4 March 2021 (18:38, UTC), there was a second event with a similar magnitude as the first, Mw 6.2. Both events were 8.5 km apart. The following analysis shows that the previous events and the most significant aftershocks were superficial. However, historical and modern seismicity has been sparse in this area. Spatially, the region represents a transitional zone between different tectonic domains; the right-lateral slip along the western end of the North Anatolian Fault Zone (NAFZ) in the north Aegean Sea plate-boundary structure ends, and crustal extension prevails in mainland Greece. These earthquakes were followed by rich seismic activity recorded by peripheral seismographs and accelerometers. The installation of a dense, portable network from the Aristotle University of Thessaloniki team also helped this effort, installed three days after the seismic excitation, as seismological stations did not azimuthally enclose the area. In the present work, a detailed analysis was performed using seismological data. A seismological catalogue of 3.787 events was used, which was processed with modern methods to calculate 34 focal mechanisms (Mw > 4.0) and to recalculate the parameters of the largest earthquakes that occurred in the first two days

    Embroidered bow-tie wearable antenna for the 868 and 915 MHz ISM bands

    Get PDF
    A textile, embroidered antenna, based on the fractal shape of the Sierpinski triangle, is designed in this paper for operation in the European free Industrial Scientific and Medical (ISM) 863–870 MHz band, as well as in the 902–928 MHz band designated for ISM applications in North and South America. Several prototypes have been fabricated by employing different stitch patterns and thread materials. The effect of the fabrication parameters on the performance of the proposed antenna is investigated through measurements and simulations, with the results being in good agreement. The antenna exhibits attractive characteristics such as wide bandwidth, relatively stableradiation patterns, as well as robustness in washing. Several tests reveal that convex and concave bent conditions do not affect the coverage of the aforementioned ISM bands, despite the shift of the resonant frequency in some cases. Moreover, the SAR values resulting from simulations are below the corresponding thresholds suggested by international guidelines
    corecore