123 research outputs found

    A bovine lymphosarcoma cell line infected with theileria annulata exhibits an irreversible reconfiguration of host cell gene expression

    Get PDF
    Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFκB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. Fifty percent of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of chromatin modification and gene expression. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and largely irreversible manner

    Preoperative evaluation of pulmonary artery morphology and pulmonary circulation in neonates with pulmonary atresia - usefulness of MR angiography in clinical routine

    Get PDF
    BACKGROUND: To explore the role of contrast-enhanced magnetic resonance angiography (CE-MRA) in clinical routine for evaluating neonates with pulmonary atresia (PA) and to describe their pulmonary artery morphology and blood supply.CE-MRA studies of 15 neonates with PA (12 female; median weight: 2900 g) were retrospectively evaluated by two radiologists in consensus. Each study was judged to be either diagnostic or non-diagnostic depending on the potential to evaluate pulmonary artery morphology and pulmonary blood supply. In those cases where surgery or conventional angiocardiography was performed results were compared. RESULTS: CE-MRA was considered diagnostic in 87%. Pulmonary artery morphology was classified as "confluent with (n = 1) and without (n = 1) main pulmonary artery", "non-confluent" (n = 6) or "absent" (n = 7). Source of pulmonary blood supply was "a persistent arterial duct" (n = 12), "a direct" (n = 22) or "indirect (n = 9) aortopulmonary collateral artery (APCA)" or "an APCA from the ascending aorta" (n = 2). In no patient were there any additional findings at surgery or conventional angiocardiography which would have changed the therapeutic or surgical approach. CONCLUSIONS: CE-MRA is a useful diagnostic tool for the preoperative evaluation of the morphology of pulmonary arteries and blood supply in neonates with PA. In most cases diagnostic cardiac catheterization can be avoided

    Microvascular engineering in perfusion culture: immunohistochemistry and CLSM findings

    Get PDF
    BACKGROUND: One of the most challenging problems in tissue engineering is the establishment of vascular supply. A possible approach might be the engineering of microvasculature in vitro and the supply by engineered feeder vessels. METHODS: An in vitro model for a small-diameter vessel was developed and made from adipose tissue stromal cells and human umbilical vein endothelial cells in a tube-like gelatine scaffold. The number of "branches" emerging from the central lumen and the morphology of the central lumen of the vessel equivalent were assessed after 16 days of either pulsatile perfusion culture or culture in rotating containers by evaluation of immunohistochemically stained sections (n = 6 pairs of cultures). Intramural capillary network formation was demonstrated in five experiments with confocal laser scanning microscopy. RESULTS: Perfused specimens showed a round or oval lumen lined by a single layer of endothelial cells, whereas following rotation culture the lumen tended to collapse. Confocal laser scanning microscopy showed more extended network formation in perfused specimens as compared to specimens after rotation culture. Partially highly interconected capillary-like networks were imaged which showed orientation around the central lumen. Perfused specimens exhibited significantly more branches emerging from the central lumen. There were, however, hardly any capillary branches crossing the whole vessel wall. CONCLUSION: Pulsatile perfusion supports the development of vascular networks with physiological appearance. Advances in reactor development, acquisition of functional data and imaging procedures are however necessary in order to attain the ultimate goal of a fully functional engineered supplying vessel

    Structural Basis for the Regulation Mechanism of the Tyrosine Kinase CapB from Staphylococcus aureus

    Get PDF
    Bacteria were thought to be devoid of tyrosine-phosphorylating enzymes. However, several tyrosine kinases without similarity to their eukaryotic counterparts have recently been identified in bacteria. They are involved in many physiological processes, but their accurate functions remain poorly understood due to slow progress in their structural characterization. They have been best characterized as copolymerases involved in the synthesis and export of extracellular polysaccharides. These compounds play critical roles in the virulence of pathogenic bacteria, and bacterial tyrosine kinases can thus be considered as potential therapeutic targets. Here, we present the crystal structures of the phosphorylated and unphosphorylated states of the tyrosine kinase CapB from the human pathogen Staphylococcus aureus together with the activator domain of its cognate transmembrane modulator CapA. This first high-resolution structure of a bacterial tyrosine kinase reveals a 230-kDa ring-shaped octamer that dissociates upon intermolecular autophosphorylation. These observations provide a molecular basis for the regulation mechanism of the bacterial tyrosine kinases and give insights into their copolymerase function

    Mutation D816V Alters the Internal Structure and Dynamics of c-KIT Receptor Cytoplasmic Region: Implications for Dimerization and Activation Mechanisms

    Get PDF
    The type III receptor tyrosine kinase (RTK) KIT plays a crucial role in the transmission of cellular signals through phosphorylation events that are associated with a switching of the protein conformation between inactive and active states. D816V KIT mutation is associated with various pathologies including mastocytosis and cancers. D816V-mutated KIT is constitutively active, and resistant to treatment with the anti-cancer drug Imatinib. To elucidate the activating molecular mechanism of this mutation, we applied a multi-approach procedure combining molecular dynamics (MD) simulations, normal modes analysis (NMA) and binding site prediction. Multiple 50-ns MD simulations of wild-type KIT and its mutant D816V were recorded using the inactive auto-inhibited structure of the protein, characteristic of type III RTKs. Computed free energy differences enabled us to quantify the impact of D816V on protein stability in the inactive state. We evidenced a local structural alteration of the activation loop (A-loop) upon mutation, and a long-range structural re-organization of the juxta-membrane region (JMR) followed by a weakening of the interaction network with the kinase domain. A thorough normal mode analysis of several MD conformations led to a plausible molecular rationale to propose that JMR is able to depart its auto-inhibitory position more easily in the mutant than in wild-type KIT and is thus able to promote kinase mutant dimerization without the need for extra-cellular ligand binding. Pocket detection at the surface of NMA-displaced conformations finally revealed that detachment of JMR from the kinase domain in the mutant was sufficient to open an access to the catalytic and substrate binding sites

    Withanolides and related steroids

    Get PDF
    Since the isolation of the first withanolides in the mid-1960s, over 600 new members of this group of compounds have been described, with most from genera of the plant family Solanaceae. The basic structure of withaferin A, a C28 ergostane with a modified side chain forming a δ-lactone between carbons 22 and 26, was considered for many years the basic template for the withanolides. Nowadays, a considerable number of related structures are also considered part of the withanolide class; among them are those containing γ-lactones in the side chain that have come to be at least as common as the δ-lactones. The reduced versions (γ and δ-lactols) are also known. Further structural variations include modified skeletons (including C27 compounds), aromatic rings and additional rings, which may coexist in a single plant species. Seasonal and geographical variations have also been described in the concentration levels and types of withanolides that may occur, especially in the Jaborosa and Salpichroa genera, and biogenetic relationships among those withanolides may be inferred from the structural variations detected. Withania is the parent genus of the withanolides and a special section is devoted to the new structures isolated from species in this genus. Following this, all other new structures are grouped by structural types. Many withanolides have shown a variety of interesting biological activities ranging from antitumor, cytotoxic and potential cancer chemopreventive effects, to feeding deterrence for several insects as well as selective phytotoxicity towards monocotyledoneous and dicotyledoneous species. Trypanocidal, leishmanicidal, antibacterial, and antifungal activities have also been reported. A comprehensive description of the different activities and their significance has been included in this chapter. The final section is devoted to chemotaxonomic implications of withanolide distribution within the Solanaceae. Overall, this chapter covers the advances in the chemistry and biology of withanolides over the last 16 years.Fil: Misico, Rosana Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (i); ArgentinaFil: Nicotra, V.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; ArgentinaFil: Oberti, Juan Carlos María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; ArgentinaFil: Barboza, Gloria Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; ArgentinaFil: Gil, Roberto Ricardo. University Of Carnegie Mellon; Estados UnidosFil: Burton, Gerardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (i); Argentin

    Trends in template/fragment-free protein structure prediction

    Get PDF
    Predicting the structure of a protein from its amino acid sequence is a long-standing unsolved problem in computational biology. Its solution would be of both fundamental and practical importance as the gap between the number of known sequences and the number of experimentally solved structures widens rapidly. Currently, the most successful approaches are based on fragment/template reassembly. Lacking progress in template-free structure prediction calls for novel ideas and approaches. This article reviews trends in the development of physical and specific knowledge-based energy functions as well as sampling techniques for fragment-free structure prediction. Recent physical- and knowledge-based studies demonstrated that it is possible to sample and predict highly accurate protein structures without borrowing native fragments from known protein structures. These emerging approaches with fully flexible sampling have the potential to move the field forward
    corecore