99 research outputs found

    Improved retrievals of aerosol optical depth and fine mode fraction from GOCI geostationary satellite data using machine learning over East Asia

    Get PDF
    Aerosol Optical Depth (AOD) and Fine Mode Fraction (FMF) are important information for air quality research. Both are mainly obtained from satellite data based on a radiative transfer model, which requires heavy computation and has uncertainties. We proposed machine learning-based models to estimate AOD and FMF directly from Geostationary Ocean Color Imager (GOCI) reflectances over East Asia. Hourly AOD and FMF were estimated for 00-07 UTC at a spatial resolution of 6 km using the GOCI reflectances, their channel differences (with 30-day minimum reflectance), solar and satellite viewing geometry, meteorological data, geographical information, and the Day Of the Year (DOY) as input features. Light Gradient Boosting Machine (LightGBM) and Random Forest (RF) machine learning approaches were applied and evaluated using random, spatial, and temporal 10-fold cross-validation with ground-based observation data. LightGBM (R-2 = 0.89-0.93 and RMSE = 0.071-0.091 for AOD and R-2 = 0.67-0.81 and RMSE = 0.079-0.105 for FMF) and RF (R-2 = 0.88-0.92 and RMSE = 0.080-0.095 for AOD and R-2 = 0.59-0.76 and RMSE = 0.092-0.118 for FMF) agreed well with the in-situ data. The machine learning models showed much smaller errors when compared to GOCI-based Yonsei aerosol retrieval and the Moderate Resolution Imaging Spectroradiometer Dark Target and Deep Blue algorithms. The Shapley Additive exPlanations values (SHAP)-based feature importance result revealed that the 412 nm band (i. e., ch01) contributed most in both AOD and FMF retrievals. Relative humidity and air temperature were also identified as important factors especially for FMF, which suggests that considering meteorological conditions helps improve AOD and FMF estimation. Besides, spatial distribution of AOD and FMF showed that using the channel difference features to indirectly consider surface reflectance was very helpful for AOD retrieval on bright surfaces

    Do large thyroid nodules (≄4 cm) without suspicious cytology need surgery?

    Get PDF
    BackgroundFine-needle aspiration biopsy (FNAB) is a good diagnostic tool for thyroid nodules; however, its high false-negative rate for giant nodules remains controversial. Many clinicians recommend surgical resection for nodules >4 cm owing to an increased risk of malignancy and an increased false-negative rate. This study aimed to examine the feasibility of this approach and investigate the incidence of malignancy in thyroid nodules >4 cm without suspicious cytology based on medical records in our center.MethodsThis was a retrospective analysis of 453 patients that underwent preoperative FNAB for nodules measuring >4 cm between January 2017 and August 2022 at Severance Hospital, Seoul.ResultsAmong the 453 patients, 140 nodules were benign and 119 were indeterminate. Among 259 patients, the final pathology results were divided into benign (149) and cancerous (110) groups, and the prevalence of malignancy was 38.9% in the benign group and 55.5% in the indeterminate group. Among the malignancies, follicular carcinoma and follicular variants of papillary carcinoma were observed in 83% of the cytologically benign group and 62.8% of the indeterminate group.ConclusionPreoperative FNAB had high false-negative rates and low diagnostic accuracy in patients with thyroid nodules >4 cm without suspicious cytologic features; therefore, diagnostic surgery may be considered a treatment option

    ATAD5 restricts R-loop formation through PCNA unloading and RNA helicase maintenance at the replication fork

    Get PDF
    R-loops are formed when replicative forks collide with the transcriptional machinery and can cause genomic instability. However, it is unclear how R-loops are regulated at transcription-replication conflict (TRC) sites and how replisome proteins are regulated to prevent R-loop formation or mediate R-loop tolerance. Here, we report that ATAD5, a PCNA unloader, plays dual functions to reduce R-loops both under normal and replication stress conditions. ATAD5 interacts with RNA helicases such as DDX1, DDX5, DDX21 and DHX9 and increases the abundance of these helicases at replication forks to facilitate R-loop resolution. Depletion of ATAD5 or ATAD5-interacting RNA helicases consistently increases R-loops during the S phase and reduces the replication rate, both of which are enhanced by replication stress. In addition to R-loop resolution, ATAD5 prevents the generation of new R-loops behind the replication forks by unloading PCNA which, otherwise, accumulates and persists on DNA, causing a collision with the transcription machinery. Depletion of ATAD5 reduces transcription rates due to PCNA accumulation. Consistent with the role of ATAD5 and RNA helicases in maintaining genomic integrity by regulating R-loops, the corresponding genes were mutated or downregulated in several human tumors

    Virtual reality-based monitoring test for MCI: A multicenter feasibility study

    Get PDF
    ObjectivesAs the significance of the early diagnosis of mild cognitive impairment (MCI) has emerged, it is necessary to develop corresponding screening tools with high ecological validity and feasible biomarkers. Virtual reality (VR)-based cognitive assessment program, which is close to the daily life of the older adults, can be suitable screening tools for MCI with ecological validity and accessibility. Meanwhile, dehydroepiandrosterone (DHEA) has been observed at a low concentration in the older adults with dementia or cognitive decline, indicating its potential as a biomarker of MCI. This study aimed to determine the efficacy and usability of a VR cognitive assessment program and salivary DHEA for screening MCI.MethodsThe VR cognitive assessment program and the traditional Montreal Cognitive Assessment (MOCA) test were performed on 12 patients with MCI and 108 healthy older adults. The VR program operates in a situation of caring for a grandchild, and evaluates the memory, attention, visuospatial, and executive functions. An analysis of covariance (ANCOVA), a partial correlation analysis, and receiving operating characteristic (ROC) curve analysis were conducted for statistical analysis.ResultsAccording to the ANCOVA, no significant difference in MOCA scores was found between the normal and MCI groups (F = 2.36, p = 0.127). However, the VR total score of the MCI group was significantly lower than that of the normal group (F = 8.674, p = 0.004). There was a significant correlation between the MOCA and VR scores in the total and matched subdomain scores. The ROC curve analysis also showed a larger area under the curve (AUC) for the VR test (0.765) than for the MOCA test (0.598), and the sensitivity and specificity of the VR program were 0.833 and 0.722, respectively. Salivary DHEA was correlated with VR total (R2 = 0.082, p = 0.01) and attention scores (R2 = 0.086, p = 0.009).ConclusionThe VR cognitive test was as effective as the traditional MOCA test in the MCI classification and safe enough for older adults to perform, indicating its potential as a diagnostic tool. It has also been shown that salivary DHEA can be used as a biomarker for MCI

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Eukaryotic DNA replication: Orchestrated action of multi-subunit protein complexes

    No full text
    Genome duplication is an essential process to preserve genetic information between generations. The eukaryotic cell cycle is composed of functionally distinct phases: G1, S, G2, and M. One of the key replicative proteins that participate at every stage of DNA replication is the Mcm2-7 complex, a replicative helicase. In the G1 phase, inactive Mcm2-7 complexes are loaded on the replication origins by replication-initiator proteins, ORC and Cdc6. Two kinases, S-CDK and DDK, convert the inactive origin-loaded Mcm2-7 complex to an active helicase, the CMG complex in the S phase. The activated CMG complex begins DNA unwinding and recruits enzymes essential for DNA synthesis to assemble a replisome at the replication fork. After completion of DNA synthesis, the inactive CMG complex on the replicated DNA is removed from chromatin to terminate DNA replication. In this review, we will discuss the structure, function, and regulation of the molecular machines involved in each step of DNA replication

    A Novel Biometric Identification Based on a User's Input Pattern Analysis for Intelligent Mobile Devices

    No full text
    As intelligent mobile devices become more popular, security threats targeting them are increasing. The resource constraints of mobile devices, such as battery life and computing power, however, make it harder to handle such threats effectively. The existing physical and behavioural biometric identification methods - looked upon as good alternatives - are unsuitable for the current mobile environment. This paper proposes a specially designed biometric identification method for intelligent mobile devices by analysing the user's input patterns, such as a finger's touch duration, pressure level and the touching width of the finger on the touch screen. We collected the input pattern data of individuals to empirically test our method. Our testing results show that this method effectively identifies users with near a 100% rate of accuracy

    Crystal structure of cyclosulfamuron

    No full text
    The title compound (systematic name: 1-{[2-(cyclopropylcarbonyl)anilino]sulfonyl}-3-(4,6-dimethoxypyrimidin-2-yl)urea), C17H19N5O6S, is a pyrimidinylsulfonylurea herbicide. The dihedral angles between the mean planes of the central benzene ring and the cyclopropyl and pyrimidinyl rings are 75.32 (9) and 88.79 (4)°, respectively. The C atoms of the methoxy groups lie almost in the plane of the pyrimidine ring [deviations = 0.043 (2) and 0.028 (2) Å] and intramolecular N—H...N, N—H...O and C—H...O hydrogen bonds all close S(6) rings. In the crystal, N—H...O and C—H...O hydrogen bonds and weak π–π interactions [centroid–centroid distances = 3.6175 (9) and 3.7068 (9) Å] link adjacent molecules, forming a three-dimensional network

    Crystal structure of dimethomorph

    No full text
    In the title compound, C21H22ClNO4 [systematic name: (E)-3-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)-1-(morpholin-4-yl)prop-2-en-1-one], which is the morpholine fungicide dimethomorph, the dihedral angles between the mean planes of the central chlorophenyl and the terminal benzene and morpholine (r.m.s. deviation = 0.2233 Å) rings are 71.74 (6) and 63.65 (7)°, respectively. In the crystal, molecules are linked via C—H...O hydrogen bonds and weak Cl...π interactions [3.8539 (11) Å], forming a three-dimensional structure
    • 

    corecore