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A B S T R A C T   

Aerosol Optical Depth (AOD) and Fine Mode Fraction (FMF) are important information for air quality research. 
Both are mainly obtained from satellite data based on a radiative transfer model, which requires heavy 
computation and has uncertainties. We proposed machine learning-based models to estimate AOD and FMF 
directly from Geostationary Ocean Color Imager (GOCI) reflectances over East Asia. Hourly AOD and FMF were 
estimated for 00–07 UTC at a spatial resolution of 6 km using the GOCI reflectances, their channel differences 
(with 30-day minimum reflectance), solar and satellite viewing geometry, meteorological data, geographical 
information, and the Day Of the Year (DOY) as input features. Light Gradient Boosting Machine (LightGBM) and 
Random Forest (RF) machine learning approaches were applied and evaluated using random, spatial, and 
temporal 10-fold cross-validation with ground-based observation data. LightGBM (R2 

= 0.89–0.93 and RMSE =
0.071–0.091 for AOD and R2 = 0.67–0.81 and RMSE = 0.079–0.105 for FMF) and RF (R2 = 0.88–0.92 and RMSE 
= 0.080–0.095 for AOD and R2 = 0.59–0.76 and RMSE = 0.092–0.118 for FMF) agreed well with the in-situ data. 
The machine learning models showed much smaller errors when compared to GOCI-based Yonsei aerosol 
retrieval and the Moderate Resolution Imaging Spectroradiometer Dark Target and Deep Blue algorithms. The 
Shapley Additive exPlanations values (SHAP)-based feature importance result revealed that the 412 nm band (i. 
e., ch01) contributed most in both AOD and FMF retrievals. Relative humidity and air temperature were also 
identified as important factors especially for FMF, which suggests that considering meteorological conditions 
helps improve AOD and FMF estimation. Besides, spatial distribution of AOD and FMF showed that using the 
channel difference features to indirectly consider surface reflectance was very helpful for AOD retrieval on bright 
surfaces.   

1. Introduction 

Atmospheric aerosols are liquid and solid particles suspended in the 
atmosphere. They come from a variety of natural and anthropogenic 
sources, which include the emissions of primary particulate matter or 
the formation of secondary particulate matter from gaseous precursors. 
Sea salt, most mineral dust, and primary biological aerosol particles 
(PBAPs) mainly originate from natural sources, while black carbon (BC), 
sulphate, nitrate and ammonium generally come from anthropogenic 
sources (Boucher et al., 2013). It is well known that aerosols can nega-
tively affect human health and even terrestrial and marine ecosystems 
such as changes in vegetation coverage and plankton ecosystems 
(Pöschl, 2005; Rap et al., 2018; Unnithan and Gnanappazham, 2020). 
Atmospheric aerosols also cause changes in radiative forcing as they 

interact with radiation and clouds, affecting the Earth’s radiation budget 
(Boucher et al., 2013). Therefore, it is necessary to understand the op-
tical and physical properties of aerosols and their spatial distribution for 
accurate estimation of aerosols. 

Aerosol optical depth (AOD) is a measure of the extinction of the 
solar radiation by aerosol particles in the atmosphere. It represents solar 
radiation reduction by aerosol particles, as they reflect, absorb or scatter 
sunlight (Boucher et al., 2013; Shin et al., 2020). AOD patterns are 
therefore controlled by aerosol patterns, and spatially and temporally 
vary with weather and geographical conditions (Della Ceca et al., 2018). 
AOD has been useful information in climate change and air pollution 
research (Martins et al., 2018). It has been used as a major predictor for 
estimating ground-level particulate matters (Kim et al., 2021; Yao et al., 
2019; Park et al., 2020). In a global scale, effective radiative forcings are 
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used to quantify the effect of aerosols on radiation and cloud, which are 
radiative forcing from aerosol-radiation interactions (ERFari) and radi-
ative forcing from aerosol-cloud interactions (ERFaci) (Boucher et al., 
2013). Aerosol particle size is an important aerosol physical property. As 
fine mode aerosols are more related to anthropogenic aerosols (Kleid-
man et al., 2005; Yan et al., 2017a) when compared to coarse mode ones, 
fine mode fraction (FMF) is used to distinguish between anthropogenic 
and natural aerosol types (Remer et al., 2005; Yan et al., 2017a). We 
define FMF as portion of the fine mode AOD in the total AOD. Yan et al. 
(2017b) found that particles with a diameter smaller than 2.5 μm (PM2.5) 
have stronger correlation with fine mode AOD (fAOD) than with total 
AOD (i.e., combined effects of both fine and coarse particles). 

AOD is generally obtained by ground-based and satellite-based sen-
sors. The Aerosol Robotic Network (AERONET) is a global network of 
ground-based remote sensing observations to measure aerosol optical, 
microphysical and radiative properties (Dubovik and King, 2000; Hol-
ben et al., 1998). It uses CIMEL ground-based Sun photometer, a passive 
remote sensing technique, to measure collimated sunlight at visible and 
infrared wavelengths, which are then used to calculate total optical 
depth based on the Beer-Lambert-Bouguer law (Giles et al., 2019; Hol-
ben et al., 1998). The uncertainty of AOD has been reported to be 0.01 to 
0.02 (Giles et al., 2019). AERONET provides a long-term, continuous 
database of aerosol-related variables including AOD in total and FMF. It 
has been widely used as high-quality ground truth data (Choi et al., 
2018; Yan et al., 2017a). 

Satellite-based AOD has been retrieved from various satellite sensors 
such as the MODerate resolution Imaging Spectroradiometer (MODIS) 
onboard Terra and Aqua satellite and the Geostationary Ocean Color 
Imager (GOCI). Satellite-based aerosol retrieval algorithms are basically 
based on the inversion algorithm using Look-Up Tables (LUTs) (Levy 
et al., 2009). LUTs are precomputed with a radiative transfer model 
given aerosol and environmental conditions. Satellite-observed spectral 
reflectance data are compared to those of LUTs to find the best fit (least- 
squares) to retrieve the corresponding aerosol properties. 

The existing physics-based AOD retrievals still come with un-
certainties inherent in their assumptions. Major issues are mainly from 
instrument calibration errors, cloud masking errors, assumptions on 

surface reflectance, and aerosol fine or coarse model selection (Kittaka 
et al., 2011; Levy et al., 2010; Remer et al., 2005). It was reported that 
AOD retrievals have large uncertainty over land due to the effect of the 
reflectance from various land surface materials (Kittaka et al., 2011; 
Levy et al., 2010; Yan et al., 2017a). Moreover, there is still room for 
developing a model that is simple and rather easy to continuously up-
date when compared to relatively heavy, complex methods based on 
radiative transfer models and LUTs. Chen et al. (2020) have jointly 
retrieved both FMF and AOD using MODIS data using artificial neural 
networks (ANN). They have reported that their ANN-based models have 
performed better compared to MODIS products, especially for FMF. 

Retrievals of AOD and FMF can be difficult due to the variation of 
aerosols in time and space. The distribution and variability of aerosols 
are affected by meteorological conditions. Aerosol loading is governed 
not only by local aerosol emissions but also by meteorological factors, 
topographic characteristics, and long-distance transport of aerosols. Mu 
and Liao (2014) found that meteorological factors can have larger in-
fluences on aerosol variations than aerosol emissions. Therefore, it is 
needed to consider meteorological and geographical factors to quantify 
aerosols in large, varied study areas. Well-known meteorological factors 
that affect AOD include relative humidity (RH), temperature, and wind 
speed (WS). Increasing RH brings increases in aerosol scattering by 
promoting hygroscopic growth of aerosol particles (Tariq et al., 2021). 
While low RH (50–80%) does not affect AOD much, very high RH 
(98–99%) can change about 25% or more of AOD values (Khoshsima 
et al. 2014). An increase in temperature can affect AOD by enhanced 
atmospheric convection (Tariq et al., 2021). WS is a factor that can 
indirectly consider the transport of aerosols from emission sources, but it 
is still difficult to isolate its effect on AOD (Engström and Ekman, 2010). 

In this study, we proposed machine learning-based retrievals of AOD 
and FMF from GOCI geostationary satellite data using ground-based 
observations from AERONET and Sun-sky radiometer Observation 
NETwork (SONET) as reference data. The proposed approach uses 
meteorological and geographic information related to the temporal cy-
cles of the target variables, in addition to satellite spectral information, 
and feeds them directly into the model to overcome uncertainties of 
existing satellite-based aerosol retrieval algorithms, which has not been 

Fig. 1. Study area with in-situ observation sites. The AERONET stations are shown in yellow circles and the SONET stations in red circles. The independent test 
stations are marked as blue triangles. The background image is surface elevation (m) from the Japanese Aerospace Exploration Agency (JAXA) ALOS World 3D 30 m 
(AW3D30) Digital Surface Model (DSM). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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tried in the past studies that retrieved AOD or FMF from satellite data 
based on machine learning algorithms (Huttunen et al., 2016; She et al., 
2020; Liang et al., 2021; Yeom et al., 2021). We aimed at improving 
model performance presented in the spatial and temporal patterns of 
AOD and FMF and at investigating machine learning models with 
detailed feature analysis to provide some explanation about the in-
teractions of input variables. The machine learning models were eval-
uated and compared with existing satellite-based products on both 
spatial and temporal domains. 

2. Data 

2.1. Study area 

The study area is the spatial coverage of the GOCI satellite sensor, 
which is centered on Korean Peninsula and covers the eastern part of 
China and Japan (22◦N–49◦N, 112◦E–145◦E) (Jang et al., 2017). Fig. 1 
shows the study area with ground-based observation sites of AERONET 
and SONET. These areas are well known for serious air quality problems. 

2.2. Ground-based observation data 

Ground-based observation data from AERONET and SONET were 
used as reference data. Both AOD and FMF data were taken from ground- 
based observation stations of AERONET Version 3 Direct Sun Algorithm 
product (https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_aod_v3) (Giles 
et al., 2019), which provides observation data in three data quality 
levels of Level 1.0 (unscreened), Level 1.5 (cloud-screened and quality 
controlled), and Level 2.0 (quality-assured). In this study, the Level 2.0 
aerosol products were used. Likewise, SONET provides AOD and FMF 
data over China (Li et al., 2018). It guarantees data quality as the same 
level of the AERONET (Huang et al., 2020). SONET data are beneficial to 
obtaining more data in China, as AERONET stations are mainly located 
in Korea and Japan. SONET provides data in four levels-Level 1, 1.5, 1.6, 
and 2. Since Levels 1.6 and 2 data are not routinely available, the cloud- 

screened Level 1.5 data were used (Zhang et al., 2019). In this study, a 
total of 33 AERONET and SONET stations were used from 1 March 2016 
to 28 February 2017 to cover all seasons, including 9 additional obser-
vations during the Korea-United States Air Quality (KORUS-AQ) field 
campaign period (from May 2016 to June 2016). The number of ground- 
based observation sites located on islands or the coast is 3, and the 
remaining 30 sites are located inland. 

2.3. Geostationary ocean color imager (GOCI) data 

Table 1 summarizes input features used in machine learning models. 
Six visible channels (centered at 412, 443, 490, 555, 660, and 680 nm) 
and two near-infrared channels (centered at 745 and 865 nm) from the 
GOCI sensor onboard the GEOstationary KOrea Multi Purpose SATellite 
1 (GEO-KOMPSAT-1), which is the Korea’s first geostationary commu-
nications, ocean, and meteorological satellite, were used (Jang et al., 
2017; Ryu et al., 2012). GOCI data were obtained from the Korea Ocean 
Satellite Center (KOSC) (http://kosc.kiost.ac.kr). Level-2 Rayleigh cor-
rected reflectance data for each GOCI band were extracted from GOCI 
level-1 radiance data through the GOCI Data Processing System (GDPS; 
http://kosc.kiost.ac.kr/index.nm?menuCd=54&lang=en). As the 
reflectance depends on satellite and solar viewing angles, sun geometry 
and satellite viewing geometry information including solar zenith angle 
(SOLZ), solar azimuth angle (SOLA) and relative azimuth angle (RAA) 
were also used as input variables. Land-sea mask information was also 
used from the GOCI data to consider different surface reflectance char-
acteristics between the land and ocean surfaces. 

As satellite-observed reflectance is composed of contributions from 
the atmosphere and the surface, the minimum reflectance technique has 
been used to determine surface reflectance (Choi et al., 2018; Choi et al., 
2016), where surface reflectance is determined as the minimum value of 
the composited reflectances over a certain time period. In this study, the 
difference between the observed reflectance and its minimum value over 
the past 30 days for each channel was used as an input feature regarded 
as aerosol reflectance. In addition to this, Normalized Difference Vege-
tation Index (NDVI) was used to give additional information on arid or 
vegetation areas, which could minimize systematic bias at low AOD 
especially due to brighter surfaces (Choi et al., 2016; Levy et al., 2013). 

2.4. Meteorological variables 

Various meteorological features were obtained from the Regional 
Data Assimilation and Prediction System (RDAPS) data (https://data. 
kma.go.kr/) to consider meteorological influences on aerosol changes. 
RDAPS is a numerical weather prediction model, developed by the Korea 
Meteorological Administration. The RDAPS data source is the boundary 
fields from Global Data Assimilation and Prediction System (Kang et al. 
2021; Park et al. 2020). It provides 3 hourly meteorological forecast 
fields (i.e., four times a day at 00, 06, 12, and 18 UTC) at a spatial 
resolution of 12 km and 70 layers up to 80 km. Here, 3-hour averaged 
latent heat flux (LH), planetary boundary layer height (PBLH), 2 m 
relative humidity (RH), 2 m air temperature (Temp), 2 m visibility, 10 m 
U-wind, 10 m V-wind and wind speed (WS) were used in this study. To 
account for aerosol wet deposition by scavenging, total precipitation 
was used from the Global Precipitation Measurement (GPM) data (Lee 
et al., 2011; Textor et al., 2007). Level-3 hourly GPM precipitation data 
with spatial resolution of 0.1 × 0.1◦, named GPM_3IMERGDF, were 
used. GPM is a joint mission between the Japan Aerospace Exploration 
Agency (JAXA) and the National Aeronautics and Space Administration 
(NASA) to observe Earth’s global precipitation. It was designed to utilize 
infrared channel-based estimates in geosynchronous-Earth orbit 
together with as many low Earth orbiting satellites as possible to 
compensate for the limitations of using a single satellite data. The pre-
cipitation data were obtained from the NASA Goddard Earth Sciences 
Data and Information Services Center (https://disc.gsfc.nasa.gov/ 
datasets/). 

Table 1 
Input features used in AOD and FMF retrieval models in the first stage (i.e., 
before feature selection). Spatial resolution means the spatial resolution of the 
original data. All data were resampled to 6 km spatial resolution. Six VIS 
channels are at 412, 443, 490, 555, 660, and 680 nm and two NIR channels at 
745 and 865 nm. The abbreviations are shown in brackets after the full names.  

Source Variables (abbreviation) Spatial 
resolution 

GOCI L1 Six VIS and two NIR channels (ch01-ch08) 
Differences between the reflectance of target day 
and its minimum value over the past 30 days for 
each six channels (ch01diff-ch08diff) 
Normalized Difference Vegetation Index (NDVI) 
Land sea mask 

500 m 

GOCI L2 Satellite Azimuth Angle (SAA) 
Satellite Zenith Angle (SZA) 
SOLar Azimuth angle (SOLA) 
SOLar Zenith angle (SOLZ) 
Relative Azimuth Angle (RAA) 

500 m 

JAXA 
AWD30 

Terrain elevation from Digital Surface Model 
(DSM) 

30 m 

RDAPS Latent Heat flux (LH) 
Planetary Boundary Layer Height (PBLH) 
Relative Humidity (RH) 
Air Temperature (Temp) 
Visibility 
U-wind 
V-wind 
Wind Speed (WS) 

12 km 

GPM Accumulated Precipitation for 24 h (AP24h) 0.1◦

Time- 
related 
data 

Sine transformed Day Of the Year (DOY) –  
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2.5. Other auxiliary variables 

Surface elevation data from the JAXA ALOS World 3D-30 m 
(AW3D30) Digital Surface Model (DSM) were used, as terrain and un-
derlying surface characteristics have been found to be important in 
aerosol patterns (Cheng et al., 2019). High AOD was often observed in 
relatively flat, low-lying regions surrounded by elevated terrain due to 
weak dispersion of aerosols (Cheng et al., 2019; Shi et al., 2018). In 
addition, Day Of the Year (DOY) was used to incorporate temporal 
dependence of AOD into the model. In East Asia, it is crucial to consider 
seasonality in air quality studies (Kang et al., 2021; Park et al., 2020). 

2.6. Data for comparison 

AOD and FMF from the Yonsei aerosol retrieval (YAER) aerosol 
products at 550 nm with a 6 km × 6 km spatial resolution were used for 
comparison. The GOCI aerosol products are derived by the GOCI YAER 
version 2 algorithm (Choi et al., 2018). The GOCI YAER products are 
calculated based on the radiative transfer model. The discrete ordinate 
radiative transfer code of the libRadtran software package models the 
top of the atmosphere (TOA) reflectances from AOD. The aerosol 
products are then calculated through the inversion process from TOA 
reflectances based on LUTs (Choi et al., 2016). YAER aerosol products 
are produced only when the number of valid pixels is more than 28 in 
the process of aggregation from 500 m to 6 km (12 × 12 pixels). After 
that, TOA reflectance and its standard deviation within 6 km were 
examined in the next masking step so that no results were produced for 
pixels with bright and heterogeneous surfaces (Choi et al., 2016). 

MODIS AOD and FMF products were also used for comparison. We 
used the Level-2 daily swath products with 10 km spatial resolution 
(MOD04_L2 for Terra and MYD04_L2 for Aqua; Collection 6.1). They are 
produced based on two MODIS aerosol algorithms, which are so-called 
the Dark Target (DT) retrieval for dark surfaces over land and ocean, 
and the Deep-Blue (DB) algorithm mainly for bright-desert regions as 
aerosol signals stand out and bright surfaces are relatively dark in the 
near-UV band. Details on algorithms can be found in for the DT algo-
rithm (Levy et al., 2009) and for the DB algorithm (Hsu et al., 2004). The 
quality assurance confidence flag (QAC) values of MODIS AOD data 
have 3 (Very Good), 2 (Good), 1 (Marginal), and 0 (bad quality) (Levy 
et al., 2013). High quality data were used for both MODIS DT (QAC = 3 
over land and QAC ≥ 1 over ocean) and DB (QAC of 2 and 3). 

3. Methods 

3.1. Data preprocessing 

Multiple data preprocessing steps were applied to construct training 
data that were fed into data-driven machine learning models. The steps 
involve variable transformation, derivation of new variables, and 
collocation at different temporal and spatial resolutions. For a proper 
comparison, it is needed to adjust AOD values to a wavelength of each 
sensor. The AERONET AOD measured at 550 nm were corrected by 
using the following power law equation (Bibi et al., 2015): 

AODc = AODa

(c
a

)
− α (1)  

where AODc is the corrected AOD, AODa is the AERONET AOD, c is a 
common wavelength of 550 nm, a is 500 nm of AERONET, and α is 
Angstrom exponent of 440–870 nm. Next, the corrected AOD and FMF at 
550 nm were collocated with GOCI data. Since GOCI observes the Earth 
at hourly intervals from 00:30 to 07:30 UTC (09:30–16:30 Korea Stan-
dard Time) (Choi et al., 2018), AERONET observations within 30 min 
before and after the GOCI observation time were averaged. 

The hourly meteorological fields were acquired by linear interpola-
tion from analysis fields with 6-hour intervals, and then they were 
resampled to a 6 km spatial resolution through spatial bilinear inter-
polation to match up with the GOCI grid. The GPM data were used as the 
accumulated precipitation over the past 24 h before the satellite ob-
servations (termed AP24h) for every hour. The JAXA AW3D30 DSM was 
aggregated to a 6 km resolution to match the GOCI grid from a 30 m 
resolution. DOY was transformed to have a value between − 1 and 1 
through sine transformation, which represent a high peak (value 1) is a 
warm season while a low peak (value − 1) means a cold season. 

3.2. Cloud masking 

AOD and FMF retrievals were performed for clear sky conditions. 
The cloud mask was derived from the YAER AOD product (Choi et al., 
2018). There are multiple steps for masking clouds and other contami-
nated pixels over the ocean and land. As a first step, pixels are classified 
as cloud if sequential, multiple conditions are met, which are applied to 
GOCI reflectance images of 0.5 × 0.5 km resolution. The conditions are 
basically to measure variations in a certain window: high variability in 
the window is determined as clouds on land and vice versa. As a next 
step, if the number of available pixels in a 12 × 12 pixel window is larger 
than 72, the darkest 20% and brightest 40% of reflectances at 490 nm 
are removed, and the remaining pixels are averaged and aggregated to 6 
× 6 km resolution. Then, additional masking at 6 × 6 km resolution is 
applied for detailed classification. Detailed descriptions of cloud mask-
ing and the aggregation processes are found in Choi et al. (2018). 

3.3. Feature selection 

The recursive feature elimination (RFE) method was applied to select 
input parameters that are useful to predict AOD and FMF. RFE first 
computes the importance of each feature for the initial set of variables, 
then removes a variable with the least importance, and recalculate the 
importance for the pruned set. This process is repeated to obtain the 
optimal set of input features. Each model with the default parameter 
setting was used for this task, and the model at each iteration was 
evaluated based on cross-validation. Feature importance was examined 
using the number of times each variable is used during training for the 
LightGBM model, and mean decrease in prediction error (mean squared 
error) for the RF model. The models were trained with a subset of input 
features selected by the feature selection method (Table 2). 

Table 2 
The selected input features for each model for AOD and FMF retrievals. b_r 
means the blue/red channel ratio.  

Target Selected features for LightGBM Selected features for RF 

AOD ch01diff, ch03diff, ch04diff, ch05diff, 
ch06diff, ch07diff, ch08diff, 
ch01, ch02, ch03, ch04, ch05, ch06, 
ch07, ch08, 
NDVI, b_r, 
SOLA, SOLZ, RAA, 
AP24h, LH, PBLH, RH, Temp, 
Visibility, 
U-wind, V-wind, WS, 
DSM, DOY 

ch01diff, ch02diff, ch03diff, 
ch04diff, ch08diff, 
ch01, ch02, ch03, ch04, ch06, 
ch07, 
NDVI, b_r, 
SOLA, SOLZ, RAA, 
LH, PBLH, RH, Temp, Visibility, 
U-wind, V-wind, WS, 
DSM, DOY 

FMF ch01diff, ch03diff, ch04diff, ch06diff, 
ch07diff, 
ch01, ch03, ch04, ch07, ch08, 
NDVI, b_r, 
SOLA, SOLZ, RAA, 
AP24h, LH, PBLH, RH, Temp, 
Visibility, 
U-wind, V-wind, WS, 
DSM, DOY 

ch01diff, ch03diff, ch04diff, 
ch05diff, ch06diff, ch07diff, 
ch01, ch04, ch06, ch08, 
NDVI, b_r, 
SOLA, SOLZ, 
AP24h, LH, PBLH, RH, Temp, 
Visibility, 
U-wind, V-wind, WS, 
DSM, DOY  
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3.4. Machine learning models 

Two machine learning techniques were applied to predict AOD and 
FMF, which are Light Gradient Boosting Machine (LightGBM) and 
Random Forest (RF) regression models. LightGBM is a gradient boosting- 
based decision tree ensemble algorithm, which basically builds decision 

trees by dividing training data in a direction of decreasing the gradient 
of the loss or cost function (i.e., reducing errors), and then combines the 
decision trees (i.e., ensemble) to obtain final prediction. LightGBM 
works differently in growing trees and is more efficient in training time 
than other existing boosting-based algorithms (Ke et al., 2017; Pham 
et al., 2021). Existing gradient boosting-based decision tree algorithms 

Fig. 2. Scatter plots of in-situ observations (x-axis) and prediction (y-axis) from (a) LightGBM and (b) RF for each cross-validation for AOD (top) and FMF (bottom). 
The red solid line is a line of the best fit to the scatter plot, and the black dotted line is an identity line. The gray lines represent the expected error of MODIS DT AOD. 
The dot color means the point density from dark red (low) to white (high), estimated by a Gaussian kernel density estimation. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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use level (depth)-wise tree growth. They build the trees’ depth first, 
which often takes a long time to optimize the trees. On the other hand, 
LightGBM grows trees in a leaf-wise manner with the Gradient-based 
One-Side Sampling (GOSS) sampling method. GOSS focuses on data 
with large gradients, while data with small gradients are randomly 
dropped and weighted with a constant value. As the approach searches 
for a smaller portion of samples rather than the whole data, it shows 
high efficiency, often resulting in comparable or better accuracy than 
others (Ke et al., 2017). In addition, LightGBM is trained in a way that 
avoids the local minimum problem by using a subsample of the training 
data to find the global optimum. In this study, LightGBM was imple-
mented with a Python package, lightgbm, in a Python 3 scikit-learn 
environment. Hyperparameters were optimized using a grid search 
method based on 5-fold cross-validation. The grid search method tests 
various combinations of the hyperparameters to find the optimal 
hyperparameters based on the model performance (here R2 value). The 
model hyperparameters tuned using the grid search method include 
max_depth, min_data_in_leaf, n_estimators, and num_leaves. The max_-
depth parameter determines the maximum depth of the tree model. The 
min_data_in_leaf parameter is the minimum number of samples required 
for a leaf, which is used to control overfitting. It is affected by the 
number of training samples and the num_leaves parameter. While 
setting this value high can avoid growing too deep trees, it may cause 
underfitting. Thus, it needs to be optimized by hyperparameter tuning. 
The n_estimators parameter is the number of trees, which is related to 
the learning_rate parameter. The learning rate typically increases with 
the decreasing number of trees. The num_leaves parameter indicates the 
number of leaves, which is a major parameter that determines the 
complexity of the tree model. 

RF builds a number of decision trees on randomly drawn subsets of 
training data with replacement, which is the Bootstrap Aggregation (or 
bagging in short), and aggregates the outputs of the trees (Breiman, 
2001; Gumma et al., 2020). Trees use the subsets of given features and 
samples, making splits along decision nodes by increasing the homo-
geneity of sub-nodes based on a criterion to measure the purity of the 
split. The best split at each node of a tree during training is searched with 
a random subset of input features or all features. The randomness for 
both training samples and input features introduced in the forest is 
intended to reduce the variance of the forest as individual decision trees 
tend to be diverse and overfit samples. The final prediction for regres-
sion is made by the ensemble of the trees by averaging predicted values 
of the trees. RF was implemented with the scikit-learn module in a 

Python 3.8.5 environment (Pedregosa et al., 2011). Model parameters 
tuned were the number of trees (i.e., n_estimators), the size of the 
random subsets of input features to consider at each node (i.e., max_-
features), the maximum depth of the tree (i.e., max_depth), and the 
maximum number of leaves (i.e., max_leaf_nodes). The optimal param-
eters were set as: n_estimators = 700, max_features = the square root of 
the number of features, max_depth = 12 and max_leaf_nodes = 600 for 
AOD and n_estimators = 600, max_features = the number of input fea-
tures, max_depth = None and max_leaf_nodes = 300 for FMF. If the 
max_depth is set as “None”, then nodes are expanded until all leaves are 
pure. Mean squared error was used to measure the quality of the split. 

3.5. Evaluation methods 

Accuracy measures including R2, Root Mean Squared Error (RMSE), 
Normalized RMSE (nRMSE), and Mean Bias Error (MBE) were used to 
evaluate the models developed in this study. Bias is calculated as the 
difference between the mean of the difference between predicted and 
observed values. Additionally, for AOD, Expected Error (EE) was also 
used. EE refers to the expected error of AOD that is determined by the 
solar zenith angle and satellite zenith angle (Choi et al., 2018). We used 
the following EE from MODIS DT AOD algorithm for comparison (Levy 
et al., 2013). 

EEMODISDT = ±(0.15 × AERONETAOD+ 0.05) (2) 

A total of 6308 data samples for AOD and 5114 for FMF were ob-
tained. For model validation, we performed random, spatial, and tem-
poral cross-validation to show the spatial and temporal transferability of 
the approach. Each validation is named random 10-fold cross-validation 
(RDCV), spatial 10-fold cross-validation (SPCV) and temporal 10-fold 
cross-validation (TVCV). The adopted three cross validation ap-
proaches have been used in recent studies to show the robustness of their 
proposed approaches including their transferability (i.e., generalization) 
(Kang et al., 2021; Wang et al., 2021, Huang et al., 2018; Wei et al., 
2021; Reitz et al., 2021). The 10-fold CV divides the whole data into 10 
subsets, where 9 subsets are used for training and the remaining 1 subset 
for validation. Then, the validation result for the whole dataset is ob-
tained by averaging the 10 results of the 10 folds. The temporal cross 
validation randomly divides the data by date, which means separate 
data by dates for each fold. The spatial cross validation is done by sites in 
the same manner. Additionally, the model was analyzed using separate 
test sites that are not used in training. At least one station was extracted 
from South Korea, China, and Japan for separate test sites, so samples 
from three AERONET and one SONET stations were used for model 
analysis. 

3.6. Model interpretation methods 

Tree-based machine learning methods allow us to interpret the 
model responses to input features, which helps to understand the 
model’s decision processes between input features and the target. The 
model interpretation methods used in this study are feature importance, 
partial dependence plots, and feature interaction values based on 
SHapley Additive exPlanation (SHAP) regression values (Lundberg and 
Lee, 2017). The SHAP method uses Shapley values from coalitional 
game theory, which is to represent the contribution of each feature to 
the model prediction of each data instance. SHAP feature importance is 
basically a measure of feature importance based on the magnitude of 
absolute Shapley values of input features. SHAP dependence plots give a 
global interpretation on the effect of an input feature on the model 
predictions. They are obtained by isolating the influence of one input 
variable, while all the other variables are fixed, and then we get the 
averaged response of the model for each input feature to analyze. They 
show the averaged model response to each feature. While partial 
dependence plots show the global averaged effect of each input feature 
to the model predictions, SHAP regression values can quantify each 

Table 3 
Accuracy assessment results of each model for AOD for the separate test data.  

Accuracy 
measure 

LightGBM RF YAER MODIS AOD 
(DT) 

MODIS AOD 
(DB) 

Number of 
samples 

613 613 613 104 136 

R2 0.93 0.92 0.89 0.82 0.69 
RMSE 0.079 0.086 0.130 0.186 0.167 
nRMSE 18.9 % 20.7 % 30.9 % 38.2 % 42.6 % 
MBE − 0.001 − 0.003 − 0.081 0.101 − 0.033 
% within EE 89.1 % 86.3 % 52.2 % 49 % 48.5 % 
% above EE 8.0 % 10.3 % 4.6 % 44.2 % 22.1 % 
% below EE 2.9 % 3.4 % 43.2 % 6.7 % 29.4 %  

Table 4 
Accuracy assessment results of each model for FMF for the separate test data.  

Accuracy measure LightGBM RF YAER MODIS FMF (DT) 

Number of samples 259 259 259 67 
R2 0.78 0.74 0.44 0.18 
RMSE 0.098 0.110 0.309 0.456 
nRMSE 13.9 % 15.0 % 43.8 % 67.3 % 
MBE 0.030 0.013 − 0.255 − 0.246  
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input features contribution to every single model outcome by account-
ing for the feature interaction effects (Lundberg and Lee, 2017). 
Therefore, SHAP values can provide a deeper understanding of model 
decisions. 

4. Results and discussions 

4.1. Model performance 

4.1.1. Cross-validation results 
Fig. 2 shows the results of three types of cross-validation (i.e., RDCV, 

SPCV, and TPCV) for the LightGBM and RF models. In the upper panel of 
Fig. 2a, the LightGBM model explained 93, 89, and 91% of the variations 

in AERONET AOD values for RDCV, SPCV, and TPCV, respectively, 
indicating no significant systematic bias observed between the valida-
tion results. These results were better than those reported in Levy et al. 
(2013) with MODIS AOD (0.74 for land and 0.88 for ocean) and in Choi 
et al. (2018) with GOCI-based YAER AOD (0.83 for land and 0.79 for 
ocean). In addition, a high fraction of the predicted AOD (92.6, 84.4, and 
89.3%) were within the EE envelopes, which were higher than those 
reported in Levy et al. (2013) with MODIS AOD (69.4 % for land and 
76.16 % for ocean) and in Choi et al. (2018) with GOCI-based YAER 
AOD (60 % for land and 71 % for ocean). However, it should be noted 
that the accuracies cannot be directly compared to the literature as the 
data for evaluation were different by study. For FMF, the models per-
formed worse than AOD, resulting in R2 of 0.81 (RDCV), 0.67 (SPCV), 

Fig. 3. Bias distribution between AOD 
(left column) and FMF (right column) of 
the LightGBM and RF models compared 
to the observations of AERONET and 
SONET for independent test data by (a) 
observation data, (b) solar zenith angle 
(SOLZ), and (c) hour (upper panel) and 
month (lower panel). Colored solid lines 
are the median of the bias with the 
interquartile range as shaded area. Gray 
bars represent the number of samples for 
LightGBM (left bar of dark gray) and RF 
(right bar of light gray).   
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and 0.68 (TPCV), as shown in the lower panel of Fig. 2a. These were 
better than those from Kleidman et al. (2005) who compared AERONET 
to MODIS FMF and reported R2 of 0.6 and from Choi et al. (2018) with 
R2 of around 0.39 for land and 0.25 for ocean. Very low FMF values 
tended to be overestimated, and they were found to mainly come from 
Beijing sites. This is likely caused by high reflectance of urban surfaces, 
which has been a problem in retrieving aerosol products (Gupta et al., 
2016). In Fig. 2b, it is shown that the results of the RF model were almost 
similar to the those of LightGBM for AOD, and slightly worse for FMF, 
but better than those previously reported (Choi et al., 2018; Levy et al., 
2013). Both models tended to have larger error in the range with less 
data for both AOD and FMF. 

Some outlying samples in the validation results were analyzed to 
investigate the main factors that influenced them. In terms of AOD, 
model performances were slightly better for RDCV, followed by TPCV 
and SPCV. In general, the fraction of the above EE (i.e., samples that fall 

above the upper EE bound) was higher than the below EE (i.e., samples 
that fall below the lower EE bound), which was even higher in SPCV. It 
was found that Japan sites account for about 10 % of the entire samples, 
but many of the samples in the above EE of SPCV came from Japan sites. 
In other words, as high AOD occurred more often in South Korea and 
China than in Japan, the models tended to overestimate AOD in Japan, 
where AOD was relatively low throughout the year. In addition, some 
AERONET AODs around 0.25 were extremely overestimated by over 1.0 
for both models. Such cases occurred at the Baengnyeong island station 
in South Korea, and the ch01 feature contributed most to the over-
estimation. Reflectance features were found to be high due to the 
unmasked thin clouds, which resulted in exceptionally overestimated 
AOD. In addition, low FMF values were generally overestimated, which 
was found to be mostly from Beijing sites. 

Fig. 4. SHAP feature importance combined with feature effects for AOD (left) and FMF (right) for (a) LightGBM and (b) RF models. Each point represents a Shapley 
value for a feature and an instance. The color shows a high and low degree of feature values. Overlapping points are scattered in y-axis direction. The input pa-
rameters are ordered according to their importance. The color means that a value of a given feature is high or low. The horizontal distribution of dots indicates that a 
given feature contributed to higher or lower predictions along the x-axis. 
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4.1.2. Model analysis with separate test sites 
The final models were analyzed using the separate test sites, which 

were not used in training the models. The model results were compared 
to the corresponding AOD and FMF data from GOCI-based YAER and 
MODIS, as shown in Tables 3 and 4. It should be noted that the com-
parison results can be affected by the selection of test stations. For AOD, 
both the LightGBM and RF models performed slightly better, resulting in 
R2 of 0.93 than the other products for YAER, MODIS DT, and DB with R2 

of 0.89, 0.82, and 0.69, respectively (Table 3), but showed a much 
higher fraction within EE with 89.1 and 86.3 % for LightGBM and RF 

when compared to 52.2, 49, and 48.5 % for YAER, MODIS DT and DB, 
respectively. The LightGBM and RF models did not feature a substantial 
bias with MBE of − 0.001 and − 0.003, respectively, whereas YAER and 
MODIS DB showed a relatively greater underestimation of AOD with a 
large negative MSE (-0.081 and − 0.033, respectively) and a much 
higher fraction of below EE, and MODIS DT showed a much higher 
overestimation of AOD (MAE = 0.101). It should be noted that the 
number of samples used for this analysis was smaller for MODIS. In 
terms of FMF, it was also found that the LightGBM and RF models 
showed better performance over the others, with much higher R2 of 0.78 

Fig. 5. Spatial distribution of monthly AOD differences between the original model and the test model without the channel difference input features. Each model was 
generated by (a) LightGBM and (b) RF. The positive value means that the test model has higher AOD than the original model, and vice versa. 
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and 0.74 compared to 0.44, and 0.18 for YAER and MODIS DT, 
respectively (Table 4). Meanwhile, the LightGBM and RF models tended 
to have a slightly positive bias (MSE: 0.030 and 0.013), while YAER and 
MODIS have a large negative bias (MSE: − 0.255 and − 0.246). 

Fig. 3 depicts the biases between AOD and FMF of the RF and 
LightGBM models and observations from AERONET and SONET for the 
separate test data by observation data, SOLZ, hours, and month. In the 
left column in Fig. 3a, both models generally had a small positive bias at 
lower AOD and more negative, varying bias at higher AOD with less 
samples, which is consistent with the cross-validation results and pre-
vious studies (Chen et al., 2020; Choi et al., 2018). It was found that a 
small positive bias was due to cloud contamination, which was also a 
major problem identified in the past studies (Choi et al., 2018; Levy 
et al., 2013). For FMF, both models had a high positive bias at low FMF 
with less samples (right column in Fig. 3a), which was also observed in 
the cross-validation results. In Fig. 3b, the bias was small on average and 
did not vary much with SOLZ. Several studies (i.e., Choi et al., 2018; 
Levy et al., 2010; Sayer et al., 2013) reported an increased bias at higher 
scattering angles (i.e., near-backscattering geometry), as the contribu-
tion of the atmosphere decreases due to the reduced atmospheric path 
length, but this was not found in this study, which means that the models 
were well generalized across various viewing geometry. Fig. 3c shows 
that there was no significant difference in bias depending on hours for 
both models, but there was an abrupt increased bias in July for FMF. It 
was found that the cases in July were small and mostly from Japan sites, 
and one of them with very low aerosol loading was significantly over-
estimated by the models, which led to a sharp increase in bias. 

4.2. Model interpretation 

Fig. 4 shows SHAP-based feature importance results for AOD and 
FMF for the LightGBM and RF models, respectively. Each dot is the 
contribution of each instance of a given feature to each model output. 
For AOD, the ch01 feature had dominant importance over all the other 
features especially for LightGBM. At the 412 nm band (i.e., ch01), 

aerosol signals are brighter and better discernible from the surface, even 
bright regions (i.e., visually bright, and high surface reflectance at 
visible channels), when compared to longer wavelengths (Choi et al., 
2016; Kaufman et al., 1997; Levy et al., 2013). It is thus seen that high 
values of ch01 caused higher predictions, whereas low ch01 caused 
lower predictions. Meanwhile, the contributions of features are not 
highly biased in the RF model. Meanwhile, RH showed a high contri-
bution to the AOD retrieval for both models. The higher the RH, the 
higher the predicted AOD (Fig. 4a). For FMF, model predictions were 
simultaneously influenced by multiple features in the LightGBM model. 
It was found that DOY, ch01, ch01diff and b_r mainly contributed to 
FMF retrieval. As fine and coarse mode AODs respond differently to 
different wavelengths (Che et al. 2015; Fotiadi et al. 2006; Mai et al. 
2018), it seems that the b_r (ratio of shorter wavelength (blue) and 
longer wavelength (red)) have jointly contributed to estimating FMF. In 
terms of meteorological factors, the contribution of RH was relatively 
high, which is related to enhanced aerosol scattering due to hygroscopic 
growth of aerosol particles with increasing RH (Ng et al., 2017; Yoon 
and Kim, 2006). Temperature was not the most important feature 
globally, but with high SHAP values, it was also an important feature for 
a certain range of FMF values. 

It was found that DOY was an important feature in retrieving both 
AOD and FMF. Although only one year data were used in this study, it 
should be noted that aerosols in the study area has a strong seasonality 
(i.e., high AOD in winter and spring), and thus it is not surprising to have 
DOY as an important feature (Kang et al., 2021; Park et al., 2020). In 
addition, DOY interacts with other meteorological variables and 
together contributed to the retrieval of AOD and FMF (Fig. S1). It was 
also confirmed that, without DOY, the model performance was not 
significantly different from the original model in each cross-validation 
(Tables S1 and S2). 

To further investigate the role of the channel difference features (i.e., 
ch01diff-ch08diff) in considering the regional surface characteristics, 
test models were constructed by excluding the channel difference fea-
tures and compared with the original models. The models followed the 

Fig. 6. Spatial distribution of monthly ch01diff (upper panel) and ch01 (bottom panel) input features.  
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same approach described in Section 3.3. Fig. 5 shows monthly AOD 
differences between the original and the test model results for LightGBM 
and RF, respectively. It was observed that there are spatial differences 
over land in the estimation of AOD according to the season. In the spring 
season (from March to May in the upper panels in Fig. 5a and Fig. 5b), 
the test model tended to estimate AOD higher than the original model in 
the upper left region in the study area, where desert and semiarid re-
gions exist. It was found to be due to the absence of the channel dif-
ference features that contributed to decreasing AOD over the bright 
underlying surfaces. As shown in Fig. 6, as ch01diff was close to 0, which 
means that there were no or very low aerosol loadings, it contributed to 
lower AOD in the original model, but this was not in the test model. In 
autumn (from September to November in the bottom panel in Fig. 5a 

and b), positive differences were observed in the upper center of the 
study area, which represents that the test model tended to underestimate 
AOD compared to the original model. It was also observed that the 
channel difference features contributed to increasing AOD in this case, 
but the test model has no information on the channel difference and 
produced decreased AOD. Another case of the underestimation of the 
test model was observed in the Beijing region in the left side of the study 
area. The region showed both high reflectance in ch01 and high 
ch01diff, which together leaded to higher AOD than the test model with 
no channel difference features. This suggests that the channel difference 
features need to be used in such retrievals; otherwise, aerosol parame-
ters may be overestimated by surface influences. 

Fig. 7. Map comparison of (a) AOD and (b) FMF from LightGBM, YAER, MODIS DT and DB algorithms on 17 May 2016 at 4 UTC with GOCI True Color imagery.  
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4.3. Spatial distribution with satellite-based products 

Fig. 7 shows comparisons of AOD and FMF predicted by the 
LightGBM and RF models with the corresponding GOCI true color 
image, GOCI-based YAER, and MODIS DT and DB data on 17 May 2016 
at 4 UTC. In this example, a massive smoke aerosol plume is clearly 
visible in the center top of the true color image. The event was origi-
nated from Siberian wildfires, occurred in the Russian forest, which 
could be transported by strong westerlies (Choi et al., 2019). Smoke 
from biomass burning has large amounts of fine particles resulting in 
high values both AOD and FMF (Oros et al. 2006). In Fig. 7a, the aerosol 
plume was well captured by the proposed models and also YAER and 
MODIS. It was also evident that in northeast China (i.e., upper left part of 
the study area), YAER tended to estimate AOD higher compared to the 

LightGBM and RF models, and MODIS algorithms were limited in the 
spatial coverage due to its polar-orbiting imaging. It should be also 
noted that sufficient observations were not available enough over the 
ocean, which would lead to higher uncertainty over the ocean compared 
to the land. Nonetheless, the LightGBM and RF models can provide ac-
curate, spatially continuous distribution of aerosol properties at higher 
temporal resolution, especially than MODIS DB and DT algorithms by 
using geostationary satellite images, which would be more useful in 
various applications as aerosols rapidly change in time and space. 

Fig. 8 shows the annual mean spatial distribution of AOD and FMF 
from LightGBM, RF, YAER, and MODIS DT and DB algorithms for the 
entire study period (March 2016–February 2017). Fig. 9 shows the 
spatial distribution of R2 values as model performance to AERONET 
data. All algorithms showed similar patterns for AOD (Fig. 8a), but it 

Fig. 8. Averaged spatial patterns of (a) AOD and (b) FMF from LightGBM, RF, YAER, and MODIS DT and DB algorithms for the entire study period (March 2016 – 
February 2017). 
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was also found in the annual mean map that the YAER algorithm showed 
slightly higher AOD in the upper left region of the study area compared 
to the other models. In Fig. 9a, LightGBM and RF models were generally 
well-matched with AERONET data showing high R2 values, but the 
YAER and MODIS algorithms showed slightly lower R2 than the other 
models for the entire study period (Table 5). It should be noted that the 
number of samples of MODIS algorithms matched with AERONET data 
was much smaller due to its polar orbiting imaging, which led to less or 
no samples available at some sites. Fig. 8b shows the spatial distribution 
of annual mean for FMF. It was evident that LightGBM and RF models 
showed higher FMF values than the YAER model in general. Meanwhile, 
the spatial distribution of MODIS FMF over ocean looks similar with 
those of LightGBM and RF models, but it showed spatially inhomoge-
neous patterns. This was reported in past studies that MODIS FMF has 

much lower accuracy over land than over ocean due to surface contri-
butions (Levy et al., 2013; Chen et al., 2020). In the comparison to the 
AERONET data (Fig. 9b), the YAER and MODIS algorithms showed 
overall lower R2 values compared to the other models. The models 
proposed in the present study yielded moderate R2 values at the test 
stations (Table 5), which were discussed in the validation results in 
Section 4.1.2. 

It should be noted that while a wide range of AOD were well detected 
by the models, there are clearly limitations of the models for cloud 
masking. We found that some of the dust area with high AOD have been 
masked out. This is a factor limiting the model’s ability to estimate 
situations such as urban areas like Beijing, where high AOD frequently 
occur, as high AOD data are not properly considered in the model. It has 
been a challenge to distinguish aerosols from clouds and bright surface 

Fig. 9. Spatial patterns of model performance (R2) for (a) AOD and (b) FMF from LightGBM, RF, YAER, and MODIS DT and DB algorithms for the entire study period 
(March 2016 – February 2017). Triangles with thick solid line indicate the test sites. As the R2 increases, the size of the symbols increases and their color changes 
from blue (low R2) to red (high R2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(Choi et al., 2018; Levy et al., 2013). For FMF shown in Fig. 7b, the 
LightGBM and RF models generally had higher FMF than YAER. FMF 
retrieval is still very challenging to extract from satellite data. Physical 
models (i.e., satellite products) have still shown very poor performance. 
Choi et al. (2018) have reported that FMF retrievals have higher bias and 
lower correlation coefficients than AOD retrievals, which were consis-
tent with the findings of this study. Meanwhile, the LightGBM and RF 
models yielded the performance similar to the MODIS DT algorithm over 
the ocean in the near center of the study area, but MODIS DT over land 
resulted in significantly low FMF. Levy et al. (2010; 2013) have reported 
that MODIS DT had considerable uncertainties especially over land. 

5. Conclusions 

This study applied machine learning models to estimate AOD and 
FMF using spectral channels from GOCI geostationary satellite images, 
their channel differences, and meteorological and geographical data. 
The results showed that the models were more consistent with AERO-
NET ground-based observation data than the existing physical model- 
based products. AOD and FMF predicted by the LightGBM and RF 
models did not show a significant systematic bias in the spatiotemporal 
cross-validation, and generally in a good agreement with AERONET, 
especially for AOD. The findings of this study showed the potential use 
of machine learning models for reliable retrievals of AOD and FMF from 
GOCI geostationary satellite data and various meteorological and 
geographic information. 

The main factor for some of the outlying samples in the validation 
results was mainly high reflectance in ch01 due to the influence of thin 
clouds that were not screened by the cloud mask, which led to over-
estimations. In the analysis with separate test data, the models showed 
higher accuracy (R2 value of 0.92 and RMSE of 0.085) when compared 
to the accuracy of the previous studies. The bias between predicted FMF 
and AERONET FMF showed that models tended to overestimate at very 
low values, which was found to mostly come from Beijing regions. This 
was likely attributed to the effect of high surface reflectance and cloud 
contamination in urban areas, which was consistent with the cross- 
validation results. 

The most important feature for AOD estimation was ch01 reflec-
tance, which means that AOD retrieval is most affected by the reflec-
tance from aerosols. While the ch01 feature also contributed most to the 
FMF retrieval, other meteorological features were also considered 
important. It highlights the need to consider meteorological effects and 
geographic information in addition to spectral information from satellite 
channels for more accurate aerosol estimation. The role of the channel 
difference feature (i.e., TOA reflectance – minimum reflectance over the 

past 30 days), which represents the influence of surface reflectance, was 
important especially in bright desert regions. Models without the 
channel difference features tended to predict lower AOD, especially for 
regions with low aerosol loadings, as underlying surface reflectance is 
not taken into consideration. Therefore, it suggests that the channel 
difference features should be considered in such aerosol retrievals to 
account for the effect of surface reflectance. 

In terms of the spatial distribution of AOD and FMF, a distinct aerosol 
plume was generally well detected by the models. However, Beijing 
regions, where moderate to high AOD values are often observed, were 
falsely screened by cloud masking, and thus aerosol information in such 
urban areas was not properly accounted for by the machine learning 
models. This suggests that more accurate cloud making would be needed 
for better aerosol retrievals. 
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