103 research outputs found

    Investigation of scaling effect on power factor of permanent magnet Vernier machines for wind power application

    Get PDF
    This study investigates the scaling effect on power factor of surface mounted permanent magnet Vernier (SPM-V) machines with power ratings ranging from 3 kW, 500 kW, 3 MW to 10 MW. For each power rating, different slot/pole number combinations have been considered to study the influence of key parameters including inter-pole magnet leakage and stator slot leakage on power factor. A detailed analytical modelling, incorporating these key parameters, is presented and validated with two-dimensional finite-element analysis for different power ratings and slot/pole number combinations. The study has revealed that with scaling (increasing power level), significant increase in electrical loading combined with the increased leakage fluxes, i.e. (i) magnet leakage flux due to large coil pitch to rotor pole pitch ratio, (ii) magnet inter-pole leakage flux and (iii) stator slot leakage flux, reduces the ratio of armature flux linkage to permanent magnet flux linkage and thereby has a detrimental effect on the power factor. Therefore, unlike conventional SPM machines, the power factor of SPM-V machines is found to be significantly reduced at high power ratings

    Comparison of surgical outcomes between iStent inject W implantation and microhook ab interno trabeculotomy in combination with phacoemulsification in primary open-angle glaucoma patients

    Get PDF
    PurposeTo examine primary open-angle glaucoma patients after undergoing combined cataract surgery with microhook ab interno trabeculotomy (μLOT-Phaco) or iStent inject W implantation (iStent-Phaco), and then evaluate the surgical outcomes after a minimum of 6 months of follow-up.MethodsBetween October 2020 and July 2022, 39 μLOT-Phaco eyes and 55 iStent-Phaco eyes that underwent surgery were evaluated in this retrospective, multicenter comparative case series. Data that included preoperative and postoperative intraocular pressure (IOP), number of glaucoma medications, and occurrence of complications were collected from medical records and then examined. Surgical failure was defined as patients exhibiting a < 20% reduction in the preoperative IOP or an IOP > 18 mmHg on two consecutive follow-up visits, or when patients were required to undergo reoperation. Success rates were determined based on a Kaplan–Meier survival analysis.ResultsAt 3, 6 and 12 months postoperatively, there was a significant postoperative reduction in the IOP (p < 0.001) and in the medications scores (p < 0.001) for both of the groups. In the μLOT-Phaco and iStent-Phaco groups, the probabilities of success at 6 and 12 months were 55.3 and 45.5%, and 48.4 and 45.5% (p = 0.38; log-rank test), respectively. In the iStent-Phaco group, there was a significant decrease in the hyphema.ConclusionComparable surgical outcomes occurred for both the μLOT and iStent inject W procedures

    Fusion partner–specific mutation profiles and KRAS mutations as adverse prognostic factors in MLL-rearranged AML

    Get PDF
    急性骨髄性白血病の予後を予測する新規マーカーを発見 --リスクに応じた適切な治療につながる可能性--. 京都大学プレスリリース. 2020-10-02.Mixed-lineage leukemia (MLL) gene rearrangements are among the most frequent chromosomal abnormalities in acute myeloid leukemia (AML). MLL fusion patterns are associated with the patient’s prognosis; however, their relationship with driver mutations is unclear. We conducted sequence analyses of 338 genes in pediatric patients with MLL-rearranged (MLL-r) AML (n = 56; JPLSG AML-05 study) alongside data from the TARGET study’s pediatric cohorts with MLL-r AML (n = 104), non–MLL-r AML (n = 581), and adult MLL-r AML (n = 81). KRAS mutations were most frequent in pediatric patients with high-risk MLL fusions (MLL-MLLLT10, MLL-MLLT4, and MLL-MLLT1). Pediatric patients with MLL-r AML (n = 160) and a KRAS mutation (KRAS-MT) had a significantly worse prognosis than those without a KRAS mutation (KRAS-WT) (5-year event-free survival [EFS]: 51.8% vs 18.3%, P < .0001; 5-year overall survival [OS]: 67.3% vs 44.3%, P = .003). The adverse prognostic impact of KRAS mutations was confirmed in adult MLL-r AML. KRAS mutations were associated with adverse prognoses in pediatric patients with both high-risk (MLLT10+MLLT4+MLLT1; n = 60) and intermediate-to-low–risk (MLLT3+ELL+others; n = 100) MLL fusions. The prognosis did not differ significantly between patients with non–MLL-r AML with KRAS-WT or KRAS-MT. Multivariate analysis showed the presence of a KRAS mutation to be an independent prognostic factor for EFS (hazard ratio [HR], 2.21; 95% confidence interval [CI], 1.35-3.59; P = .002) and OS (HR, 1.85; 95% CI, 1.01-3.31; P = .045) in MLL-r AML. The mutation is a distinct adverse prognostic factor in MLL-r AML, regardless of risk subgroup, and is potentially useful for accurate treatment stratification. This trial was registered at the UMIN (University Hospital Medical Information Network) Clinical Trials Registry (UMIN-CTR; http://www.umin.ac.jp/ctr/index.htm) as #UMIN000000511

    The activation mechanism of the aryl hydrocarbon receptor (AhR) by molecular chaperone HSP90

    Get PDF
    The aryl hydrocarbon receptor is a member of the nuclear receptor superfamily that associates with the molecular chaperone HSP90 in the cytoplasm. The activation mechanism of the AhR is not yet fully understood. It has been proposed that after binding of ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3methylcholanthrene (3-MC), or β-naphthoflavone (β-NF), the AhR dissociates from HSP90 and translocates to the nucleus. It has also been hypothesized that the AhR translocates to the nucleus and forms a complex with HSP90 and other co-chaperones. There are a few reports about the direct association or dissociation of AhR and HSP90 due to difficulties in purifying AhR. We constructed and purified the PAS domain from AhR. Binding of the AhR-PAS domain to β-NF affinity resin suggested that it possesses ligand-binding affinity. We demonstrated that the AhR-PAS domain binds to HSP90 and the association is not affected by ligand binding. The ligand 17-DMAG inhibited binding of HSP90 to GST-PAS. In an immunoprecipitation assay, HSP90 was co-immunoprecipitated with AhR both in the presence or absence of ligand. Endogenous AhR decreased in the cytoplasm and increased in the nucleus of HeLa cells 15. min after treatment with ligand. These results suggested that the ligand-bound AhR is translocated to nucleus while in complex with HSP90.We used an in situ proximity ligation assay to confirm whether AhR was translocated to the nucleus alone or together with HSP90. HSP90 was co-localized with AhR after the nuclear translocation. It has been suggested that the ligand-bound AhR was translocated to the nucleus with HSP90. Activated AhR acts as a transcription factor, as shown by the transcription induction of the gene CYP1A1 8. h after treatment with β-NF

    Complete chemical structures of human mitochondrial tRNAs

    Get PDF
    Mitochondria generate most cellular energy via oxidative phosphorylation. Twenty-two species of mitochondrial (mt-)tRNAs encoded in mtDNA translate essential subunits of the respiratory chain complexes. mt-tRNAs contain post-transcriptional modifications introduced by nuclear-encoded tRNA-modifying enzymes. They are required for deciphering genetic code accurately, as well as stabilizing tRNA. Loss of tRNA modifications frequently results in severe pathological consequences. Here, we perform a comprehensive analysis of post-transcriptional modifications of all human mt-tRNAs, including 14 previously-uncharacterized species. In total, we find 18 kinds of RNA modifications at 137 positions (8.7% in 1575 nucleobases) in 22 species of human mt-tRNAs. An up-to-date list of 34 genes responsible for mt-tRNA modifications are provided. We identify two genes required for queuosine (Q) formation in mt-tRNAs. Our results provide insight into the molecular mechanisms underlying the decoding system and could help to elucidate the molecular pathogenesis of human mitochondrial diseases caused by aberrant tRNA modifications

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Chemical ligation of oligodeoxynucleotides by X-irradiation and its application to regulation of G-quadruplex formation.

    Get PDF
    We demonstrated radiolytic ligation of oligodeoxynucleotides (ODNs) possessing disulfide bond and its application to regulation of DNA quadruplex formation. G-rich hexamer ODNs had poor ability to form quadruplex, while X-irradiation of the ODNs induced interstrand exchange reaction at disulfide bond to form ligated 12 mer ODNs, leading to the ready formation of quadruplex due to the entropic effect. Since complexation of the ligated ODNs with hemin in the presence of K(+) showed strong soret band absorption and also catalyzed the H2O2-mediated oxidation of luminol, it appears that the quadruplex formed from ligated ODNs showed a function similar to native DNA quadruplex
    corecore