9 research outputs found

    Higuchi Fractal Dimension of Heart Rate Variability During Percutaneous Auricular Vagus Nerve Stimulation in Healthy and Diabetic Subjects

    Get PDF
    Analysis of heart rate variability (HRV) can be applied to assess the autonomic nervous system (ANS) sympathetic and parasympathetic activity. Since living systems are non-linear, evaluation of ANS activity is difficult by means of linear methods. We propose to apply the Higuchi fractal dimension (HFD) method for assessment of ANS activity. HFD measures complexity of the HRV signal. We analyzed 45 RR time series of 84 min duration each from nine healthy and five diabetic subjects with clinically confirmed long-term diabetes mellitus type II and with diabetic foot ulcer lasting more than 6 weeks. Based on HRV time series complexity analysis we have shown that HFD: (1) discriminates healthy subjects from patients with diabetes mellitus type II; (2) assesses the impact of percutaneous auricular vagus nerve stimulation (pVNS) on ANS activity in normal and diabetic conditions. Thus, HFD may be used during pVNS treatment, to provide stimulation feedback for on-line regulation of therapy in a fast and robust way

    International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020).

    Get PDF
    Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice

    Non-invasive Auricular Vagus Nerve Stimulation as a Potential Treatment for Covid19-Originated Acute Respiratory Distress Syndrome

    No full text
    Background: Covid-19 is an infectious disease caused by an invasion of the alveolar epithelial cells by coronavirus 19. The most severe outcome of the disease is the Acute Respiratory Distress Syndrome (ARDS) combined with hypoxemia and cardiovascular damage. ARDS and co-morbidities are associated with inflammatory cytokine storms, sympathetic hyperactivity, and respiratory dysfunction. Hypothesis: In the present paper, we present and justify a novel potential treatment for Covid19-originated ARDS and associated co-morbidities, based on the non-invasive stimulation of the auricular branch of the vagus nerve. Methods: Auricular vagus nerve stimulation activates the parasympathetic system including anti-inflammatory pathways (the cholinergic anti-inflammatory pathway and the hypothalamic pituitary adrenal axis) while regulating the abnormal sympatho-vagal balance and improving respiratory control. Results: Along the paper (1) we expose the role of the parasympathetic system and the vagus nerve in the control of inflammatory processes (2) we formulate our physiological and methodological hypotheses (3) we provide a large body of clinical and preclinical data that support the favorable effects of auricular vagus nerve stimulation in inflammation, sympatho-vagal balance as well as in respiratory and cardiac ailments, and (4) we list the (few) possible collateral effects of the treatment. Finally, we discuss auricular vagus nerve stimulation protective potential, especially in the elderly and co-morbid population with already reduced parasympathetic response. Conclusions: Auricular vagus nerve stimulation is a safe clinical procedure and it could be either an effective treatment for ARDS originated by Covid-19 and similar viruses or a supplementary treatment to actual ARDS therapeutic approaches

    International consensus based review and recommendations for minimum reporting standards in research on transcutaneous vagus nerve stimulation (version 2020)

    Get PDF
    Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice
    corecore