16 research outputs found

    Whole-genome genotyping and resequencing reveal the association of a deletion in the complex interferon alpha gene cluster with hypothyroidism in dogs

    Get PDF
    Background: Hypothyroidism is a common complex endocrinopathy that typically has an autoimmune etiology, and it affects both humans and dogs. Genetic and environmental factors are both known to play important roles in the disease development. In this study, we sought to identify the genetic risk factors potentially involved in the susceptibility to the disease in the high-risk Giant Schnauzer dog breed. Results: By employing genome-wide association followed by fine-mapping (top variant p-value=5.7x10(-6)), integrated with whole-genome resequencing and copy number variation analysis, we detected a similar to 8.9 kbp deletion strongly associated (p-value=0.0001) with protection against development of hypothyroidism. The deletion is located between two predicted Interferon alpha (IFNA) genes and it may eliminate functional elements potentially involved in the transcriptional regulation of these genes. Remarkably, type I IFNs have been extensively associated to human autoimmune hypothyroidism and general autoimmunity. Nonetheless, the extreme genomic complexity of the associated region on CFA11 warrants further long-read sequencing and annotation efforts in order to ascribe functions to the identified deletion and to characterize the canine IFNA gene cluster in more detail. Conclusions: Our results expand the current knowledge on genetic determinants of canine hypothyroidism by revealing a significant link with the human counterpart disease, potentially translating into better diagnostic tools across species, and may contribute to improved canine breeding strategies

    Scleroderma

    No full text

    Limited Genetic Overlap Between Overt Hashimoto's Thyroiditis and Graves' Disease in Twins : A Population-based Study

    Get PDF
    Context: Hashimoto's thyroiditis (HT) and Graves' disease (GD) are known to coaggregate in families, but the magnitude and nature of a shared etiology is unknown. Objectives: To estimate the shared genetic influence on overt HT and GD and to examine if the heritability differs between men and women. Design, setting, and patients: We used national health registries to identify cases of HT and GD in a cohort of 110 814 Swedish twins. By comparing intra-class and cross-twin cross-trait correlations in dizygotic and monozygotic twins, we calculated heritability and the proportions thereof shared between the diseases. Univariate estimates of heritability were calculated by sex. Results: The heritability for HT and GD was 65% (95% CI, 61-70) and 63% (95% CI, 55-72), respectively. The genetic correlation was 0.35 (95% CI, 0.20-0.50) and shared genetic effects accounted for 8% of the variance for both HT and GD. Univariate heritability was significantly higher in men than in women for HT (90% vs 60%, P < 0.001) but not for GD (79% vs 63%, P = 0.085). Conclusions: From a genetic perspective, HT and GD appear to be only modestly related diseases. Hence, the term "autoimmune thyroid disease," used to cluster these disorders, may have limited validity in a genetic context. Moreover, the mechanisms contributing to HT are partly different for the sexes, with genetic components more important in men

    Comment on 'AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies'

    No full text
    The AIRE gene plays a key role in the development of central immune tolerance by promoting thymic presentation of tissue-specific molecules. Patients with AIRE-deficiency develop multiple autoimmune manifestations and display autoantibodies against the affected tissues. In 2016 it was reported that: i) the spectrum of autoantibodies in patients with AIRE-deficiency is much broader than previously appreciated; ii) neutralizing autoantibodies to type I interferons (IFNs) could provide protection against type 1 diabetes in these patients (Meyer et al., 2016). We attempted to replicate these new findings using a similar experimental approach in an independent patient cohort, and found no evidence for either conclusion

    Proteome-wide survey of the autoimmune target repertoire in autoimmune polyendocrine syndrome type 1

    No full text
    Autoimmune polyendocrine syndrome type 1 (APS1) is a monogenic disorder that features multiple autoimmune disease manifestations. It is caused by mutations in the Autoimmune regulator (AIRE) gene, which promote thymic display of thousands of peripheral tissue antigens in a process critical for establishing central immune tolerance. We here used proteome arrays to perform a comprehensive study of autoimmune targets in APS1. Interrogation of established autoantigens revealed highly reliable detection of autoantibodies, and by exploring the full panel of more than 9000 proteins we further identified MAGEB2 and PDILT as novel major autoantigens in APS1. Our proteome-wide assessment revealed a marked enrichment for tissue-specific immune targets, mirroring AIREs selectiveness for this category of genes. Our findings also suggest that only a very limited portion of the proteome becomes targeted by the immune system in APS1, which contrasts the broad defect of thymic presentation associated with AIRE-deficiency and raises novel questions what other factors are needed for break of tolerance.Funding Agencies|Swedish Research Council; Formas Research Council; Torsten Soderberg Foundation; Ragnar Soderberg Foundation; Novonordisk Foundation; Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA</p

    No link between type I interferon autoantibody positivity and adverse reactions to COVID-19 vaccines

    No full text
    Type I interferons act as gatekeepers against viral infection, and autoantibodies that neutralize these signaling molecules have been associated with COVID-19 severity and adverse reactions to the live-attenuated yellow fever vaccine. On this background, we sought to examine whether autoantibodies against type I interferons were associated with adverse events following COVID-19 vaccination. Our nationwide analysis suggests that type I interferon autoantibodies were not associated with adverse events after mRNA or viral-vector COVID-19 vaccines.These authors contributed equally: Petter Brodin, Pär Hallberg, Mia Wadelius, Nils Landegren.</p

    Relation between HLA and copy number variation of steroid 21-hydroxylase in a Swedish cohort of patients with autoimmune Addison's disease

    No full text
    Objective: Autoantibodies against the adrenal enzyme 21-hydroxylase is a hallmark manifestation in autoimmune Addison's disease (AAD). Steroid 21-hydroxylase is encoded by CYP21A2, which is located in the human leucocyte antigen (HLA) region together with the highly similar pseudogene CYP21A1P. A high level of copy number variation is seen for the 2 genes, and therefore, we asked whether genetic variation of the CYP21 genes is associated with AAD. Design: Case-control study on patients with AAD and healthy controls. Methods: Using next-generation DNA sequencing, we estimated the copy number of CYP21A2 and CYP21A1P, together with HLA alleles, in 479 Swedish patients with AAD and autoantibodies against 21-hydroxylase and in 1393 healthy controls. Results: With 95% of individuals carrying 2 functional 21-hydroxylase genes, no difference in CYP21A2 copy number was found when comparing patients and controls. In contrast, we discovered a lower copy number of the pseudogene CYP21A1P among AAD patients (P = 5 × 10-44), together with associations of additional nucleotide variants, in the CYP21 region. However, the strongest association was found for HLADQB1*02:01 (P = 9 × 10-63), which, in combination with the DRB1*04:04-DQB1*03:02 haplotype, imposed the greatest risk of AAD. Conclusions: We identified strong associations between copy number variants in the CYP21 region and risk of AAD, although these associations most likely are due to linkage disequilibrium with disease-associated HLA class II alleles
    corecore