506 research outputs found

    Catastrophic cooling and cessation of heating in the solar corona

    Full text link
    Condensations in the more than 10^6 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuable tool for studying the dynamic response of the corona to the heating processes. We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the loop top resulting in the well-known catastrophic cooling. This process gives a good match to observations of coronal condensations. This shows that the corona needs a steady supply of energy to support the coronal plasma, even during coronal condensations. Otherwise the corona would drain very fast, too fast to even form a condensation.Comment: Astronomy & Astrophysics, in press, 10 pages, 5 figure

    Analisis Penetapan NJOP terhadap Harga Pasar dengan Metode Assessment Sales Ratio dalam Kaitannya dengan Potensi Pajak Bumi (Studi Kasus Tanah di Kecamatan Serpong Utara, Kota Tangerang Selatan)

    Full text link
    This research entitled “Analysis of Sales Worth for Taxable Properties Decision on Market Price with Assessment Sales Ratio Method in Accordance with Property Tax (Case Study in North Serpong Sub District South Tangerang City)”. The research aims to know whether assessment sales ratio has already appropriate with Property Tax Director decision, to know property tax potential that still can be collected by Regional Government, and to know whether Sales Worth for Taxable Properties has been equalize in all North Serpong Sub District area, in South Tangerang City. The research location was in North Serpong Sub District by using data of Sales Worth for Taxable Property and market price of land from 70 transactions in 2011. Descriptive was this research method by using simple random sampling as sampling method. By using assessment sales ratio analysis, central tendency, disperse coefficient measurement, and variation coefficientThe result shows that ASR value = 65.2%, which means ASR was not appropriate with standard from Property Tax Director and there was property tax potential for 14.8% up to 34.8% or for about Rp. 48,009,940.80 up to Rp. 113,099,860.80. COD variability measurement was 26.26% and COV was 34.51%, it means Sales Worth for Taxable Property of land in North Serpong Sub District was in unbalance standard.The implication was market price of land as the basic of Sales Worth for Taxable Property was dynamic and up-to-date, thus Serpong Tax Office Service (KPP) Pratama should making list of data, estimation, and reviewing individually. SO, the renewing and adjustment toward Sales Worth for Taxable Property decision based on market price should be observed to increase the property tax potential, and Serpong KPP Pratama should add estimating and data collecting officer in the field to balance the standard of decision on Sales Worth for Taxable Property

    Modelling of EIS spectrum drift from instrumental temperatures

    Full text link
    An empirical model has been developed to reproduce the drift of the spectrum recorded by EIS on board Hinode using instrumental temperatures and relative motion of the spacecraft. The EIS spectrum shows an artificial drift in wavelength dimension in sync with the revolution of the spacecraft, which is caused by temperature variations inside the spectrometer. The drift amounts to 70 km s1^{-1} in Doppler velocity and introduces difficulties in velocity measurements. An artificial neural network is incorporated to establish a relationship between the instrumental temperatures and the spectral drift. This empirical model reproduces observed spectrum shift with an rms error of 4.4 km s1^{-1}. This procedure is robust and applicable to any spectrum obtained with EIS, regardless of of the observing field. In addition, spectral curvatures and spatial offset in the North - South direction are determined to compensate for instrumental effects.Comment: 16 pages, 12 Figures, accepted for publication in Solar Physics. Added description of neural networ

    Long-term Variation of the Corona in Quiet Regions

    Full text link
    Using Hinode EUV Imaging Spectrometer (EIS) spectra recorded daily at Sun center from the end of 2006 to early 2011, we studied the long-term evolution of the quiet corona. The light curves of the higher temperature emission lines exhibit larger variations in sync with the solar activity cycle while the cooler lines show reduced modulation. Our study shows that the high temperature component of the corona changes in quiet regions, even though the coronal electron density remains almost constant there. The results suggest that heat input to the quiet corona varies with the solar activity cycle.Comment: 9 pages, 5 figures, Accepted for publication in Solar Physic

    Continuous upflows and sporadic downflows observed in active regions

    Full text link
    We present a study of the temporal evolution of coronal loops in active regions and its implications for the dynamics in coronal loops. We analyzed images of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) at multiple temperatures to detect apparent motions in the coronal loops. Quasi-periodic brightness fluctuations propagate upwards from the loop footpoint in hot emission at 1MK, while sporadic downflows are seen in cool emission below 1MK. The upward motion in hot emission increases just after the cool downflows. The apparent propagating pattern suggests a hot upflow from the loop footpoints, and is considered to supply hot plasma into the coronal loop, but a wavelike phenomenon cannot be ruled out. Coronal condensation occasionally happens in the coronal loop, and the cool material flows down to the footpoint. Emission from cool plasma could have a significant contribution to hot AIA channels in the event of coronal condensation.Comment: 5 pages, 6 figures, A&A in pres

    Evolution of microflares associated with bright points in coronal holes and in quiet regions

    Full text link
    We aim to find similarities and differences between microflares at coronal bright points found in quiet regions and coronal holes, and to study their relationship with large scale flares. Coronal bright points in quiet regions and in coronal holes were observed with Hinode/EIS using the same sequence. Microflares associated with bright points are identified from the X-ray lightcurve. The temporal variation of physical properties was traced in the course of microflares. The lightcurves of microflares indicated an impulsive peak at hot emission followed by an enhancement at cool emission, which is compatible with the cooling model of flare loops. The density was found to increase at the rise of the impulsive peak, supporting chromospheric evaporation models. A notable difference is found in the surroundings of microflares; diffuse coronal jets are produced above microflares in coronal holes while coronal dimmings are formed in quiet regions. The microflares associated with bright points share common characteristics to active region flares. The difference in the surroundings of microflares are caused by open and closed configurations of the pre-existing magnetic field.Comment: 9 pages, 11 figures, accepted for publication in A&

    Explosive events - swirling transition region jets

    Full text link
    In this paper, we extend our earlier work to provide additional evidence for an alternative scenario to explain the nature of so-called `explosive events'. The bi-directed, fast Doppler motion of explosive events observed spectroscopically in the transition region emission is classically interpreted as a pair of bidirectional jets moving upward and downward from a reconnection site. We discuss the problems of such a model. In our previous work, we focused basically on the discrepancy of fast Doppler motion without detectable motion in the image plane. We now suggest an alternative scenario for the explosive events, based on our observations of spectral line tilts and bifurcated structure in some events. Both features are indicative of rotational motion in narrow structures. We explain the bifurcation as the result of rotation of hollow cylindrical structures and demonstrate that such a sheath model can also be applied to explain the nature of the puzzling `explosive events'. We find that the spectral tilt, the lack of apparent motion, the bifurcation, and a rapidly growing number of direct observations support an alternative scenario of linear, spicular-sized jets with a strong spinning motion.Comment: 9 pages, 3 figures, accepted for publication in Solar Physic

    Observations of a rotating macrospicule associated with an X-ray jet

    Full text link
    We attempt to understand the driving mechanism of a macrospicule and its relationship with a coronal jet. We study the dynamics of a macrospicule and an associated coronal jet captured by multi-spacecraft observations. Doppler velocities both in the macrospicule and the coronal jet are determined by EIS and SUMER spectra. Their temporal evolution is studied using X-ray and He II 304 images. A blueshift of -120+/-15 km/s is detected on one side of the macrospicule, while a redshift of 50+/-6 km/s is found at the base of the other side. The inclination angle of the macrospicule inferred from a stereoscopic analysis with STEREO suggests that the measured Doppler velocities can be attributed to a rotating motion of the macrospicule rather than a radial flow or an expansion. The macrospicule is driven by the unfolding motion of a twisted magnetic flux rope, while the associated X-ray jet is a radial outflow.Comment: 4 pages, 3 figures, accepted for publication in A&
    corecore