11 research outputs found

    Deciphering neuronal circuits of non-image forming vision

    Get PDF
    The human brain consists of around 86 billion neurons which cooperate in millions of neuronal circuits through synaptic connections in order to perform the immense variety of brain functions. To fully understand the brain and its diseases we have to understand how neuronal circuits are built, and how they operate. The different functional circuits, assembled from different cell types, are often intermingled and, due to the lack of proper deciphering tools, their study was strongly limited in the past. In the last decade developments in trans-synaptic viral tracing, combined with modern imaging techniques, have enabled cell-type specific studies of neuronal circuits. In my thesis I present multiple projects addressing the development of trans-synaptic viral tools and their application in the study of neuronal circuits involved in subconscious vision

    The First Stage of Cardinal Direction Selectivity Is Localized to the Dendrites of Retinal Ganglion Cells

    Get PDF
    SummaryInferring the direction of image motion is a fundamental component of visual computation and essential for visually guided behavior. In the retina, the direction of image motion is computed in four cardinal directions, but it is not known at which circuit location along the flow of visual information the cardinal direction selectivity first appears. We recorded the concerted activity of the neuronal circuit elements of single direction-selective (DS) retinal ganglion cells at subcellular resolution by combining GCaMP3-functionalized transsynaptic viral tracing and two-photon imaging. While the visually evoked activity of the dendritic segments of the DS cells were direction selective, direction-selective activity was absent in the axon terminals of bipolar cells. Furthermore, the glutamate input to DS cells, recorded using a genetically encoded glutamate sensor, also lacked direction selectivity. Therefore, the first stage in which extraction of a cardinal motion direction occurs is the dendrites of DS cells

    Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit

    No full text
    Spatial asymmetries in neural connectivity have an important role in creating basic building blocks of neuronal processing. A key circuit module of directionally selective (DS) retinal ganglion cells is a spatially asymmetric inhibitory input from starburst amacrine cells. It is not known how and when this circuit asymmetry is established during development. Here we photostimulate mouse starburst cells targeted with channelrhodopsin-2 (refs 6–8) while recording from a single genetically labelled type of DS cell. We follow the spatial distribution of synaptic strengths between starburst and DS cells during early postnatal development before these neurons can respond to a physiological light stimulus, and confirmconnectivity by monosynaptically restricted trans-synaptic rabies viral tracing. We show that asymmetry develops rapidly over a 2-day period through an intermediate state in which random or symmetric synaptic connections have been established. The development of asymmetry involves the spatially selective reorganization of inhibitory synaptic inputs. Intriguingly, the spatial distribution of excitatory synaptic inputs from starburst cells is significantly more symmetric than that of the inhibitory inputs at the end of this developmental period. Our work demonstrates a rapid developmental switch from a symmetric to asymmetric input distribution for inhibition in the neural circuit of a principal cell

    The First Stage of Cardinal Direction Selectivity Is Localized to the Dendrites of Retinal Ganglion Cells

    No full text
    Inferring the direction of image motion is a fundamental component of visual computation and essential for visually guided behavior. In the retina, the direction of image motion is computed in four cardinal directions, but it is not known at which circuit location along the flow of visual information the cardinal direction selectivity first appears. We recorded the concerted activity of the neuronal circuit elements of single direction-selective (DS) retinal ganglion cells at subcellular resolution by combining GCaMP3-functionalized transsynaptic viral tracing and two-photon imaging. While the visually evoked activity of the dendritic segments of the DS cells were direction selective, direction-selective activity was absent in the axon terminals of bipolar cells. Furthermore, the glutamate input to DS cells, recorded using a genetically encoded glutamate sensor, also lacked direction selectivity. Therefore, the first stage in which extraction of a cardinal motion direction occurs is the dendrites of DS cells.status: publishe

    Genetically timed, activity-sensor and rainbow transsynaptic viral tools.

    No full text
    We developed retrograde, transsynaptic pseudorabies viruses (PRVs) with genetically encoded activity sensors that optically report the activity of connected neurons among spatially intermingled neurons in the brain. Next we engineered PRVs to express two differentially colored fluorescent proteins in a time-shifted manner to define a time period early after infection to investigate neural activity. Finally we used multiple-colored PRVs to differentiate and dissect the complex architecture of brain regions
    corecore