144 research outputs found

    Experiments quantifying elemental and isotopic fractionations during evaporation of CAI-like melts in low-pressure hydrogen and in vacuum : Constraints on thermal processing of CAI in the protoplanetary disk

    Get PDF
    This work was supported by NASA grant NNX17AE84G (to R.M.). Magnesium isotopic measurements were supported by NSF grant EAR-17407706 (to F.-Z. T.). P.S. and the Si isotope measurements made at the St Andrews Isotope Group (STAiG) at the University of St Andrews were supported by NERC grant NE/R002134/1 a Carnegie Trust Research Incentive Grant. Evaporation experiments at Hokkaido University were supported by the Ministry of Education, Sports, Science, and Technology KAKENHI Grant (to S.T.).It is widely believed that the precursors of coarse-grained CAIs in chondrites are solar nebula condensates that were later reheated and melted to a high degree. Such melting under low-pressure conditions is expected to result in evaporation of moderately volatile magnesium and silicon and their mass-dependent isotopic fractionation. The evaporation of silicate melts has been extensively studied in vacuum laboratory experiments and a large experimental database on chemical and isotopic fractionations now exists. Nevertheless, it remains unclear if vacuum evaporation of CAI-like melts adequately describes the evaporation in the hydrogen-rich gas of the solar nebula. Here we report the results of a detailed experimental study on evaporation of a such melt at 1600°C in both vacuum and low-pressure hydrogen gas, using 1.5- and 2.5-mm diameter samples. The experiments show that although at 2×10−4 bar H2 magnesium and silicon evaporate ∼2.8 times faster than at 2×10−5 bar H2 and ∼45 times faster than in vacuum, their relative evaporation rates and isotopic fractionation factors remain the same. This means that the chemical and isotopic evolutions of all evaporation residues plot along a single evaporation trajectory regardless of experimental conditions (vacuum or low-PH2) and sample size. The independence of chemical and isotopic evaporation trajectories on PH2 of the surrounding gas imply that the existing extensive experimental database on vacuum evaporation of CAI-like materials can be safely used to model the evaporation under solar nebula conditions, taking into account the dependence of evaporation kinetics on PH2. The experimental data suggest that it would take less than 25 minutes at 1600°C to evaporate 15–50% of magnesium and 5–20% of silicon from a 2.5-mm diameter sample in a solar nebula with PH2∼2×10−4 bar and to enrich the residual melt in heavy magnesium and silicon isotopes up to δ25Mg ∼ 5–10‰ and δ29Si ∼ 2–4‰. The expected chemical and isotopic features are compatible to those typically observed in coarse-grained Type A and B CAIs. Evaporation for ∼1 hour will produce δ25Mg ∼30–35‰ and δ29Si ∼10–15‰, close to the values in highly fractionated Type F and FUN CAIs. These very short timescales suggest melting and evaporation of CAI precursors in very short dynamic heating events. The experimental results reported here provide a stringent test of proposed astrophysical models for the origin and evolution of CAIs.PostprintPeer reviewe

    Protein phosphatase beta, a putative type-2A protein phosphatase from the human malaria parasite Plasmodium falciparum.

    Get PDF
    Protein phosphatases play a critical role in the regulation of the eukaryotic cell cycle and signal transduction. A putative protein serine/threonine phosphatase gene has been isolated from the human malaria parasite Plasmodium falciparum. The gene has an unusual intron that contains four repeats of 32 nucleotides and displays a high degree of size polymorphism among different strains of P. falciparum. The open reading frame reconstituted by removal of the intron encodes a protein of 466 amino acids with a predicted molecular mass of approximately 53.7 kDa. The encoded protein, termed protein phosphatase beta (PP-beta), is composed of two distinct domains. The C-terminal domain comprises 315 amino acids and exhibits a striking similarity to the catalytic subunits of the type-2A protein phosphatases. Database searches revealed that the catalytic domain has the highest similarity to Schizosaccharomyces pombe Ppa1 (58% identity and 73% similarity). However, it contains a hydrophilic insert consisting of five amino acids. The N-terminal domain comprises 151 amino acid residues and exhibits several striking features, including high levels of charged amino acids and asparagine, and multiple consensus phosphorylation sites for a number of protein kinases. An overall structural comparison of PP-beta with other members of the protein phosphatase 2A group revealed that PP-beta is more closely related to Saccharomyces cerevisiae PPH22. Southern blots of genomic DNA digests and chromosomal separations showed that PP-beta is a single-copy gene and is located on chromosome 9. A 2800-nucleotide transcript of this gene is expressed specifically in the sexual erythrocytic stage (gametocytes). The results indicate that PP-beta may be involved in sexual stage development

    Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture

    Get PDF
    INTRODUCTION: Metastasis involves the emigration of tumor cells through the vascular endothelium, a process also known as diapedesis. The molecular mechanisms regulating tumor cell diapedesis are poorly understood, but may involve heterocellular gap junctional intercellular communication (GJIC) between tumor cells and endothelial cells. METHOD: To test this hypothesis we expressed connexin 43 (Cx43) in GJIC-deficient mammary epithelial tumor cells (HBL100) and examined their ability to form gap junctions, establish heterocellular GJIC and migrate through monolayers of human microvascular endothelial cells (HMVEC) grown on matrigel-coated coverslips. RESULTS: HBL100 cells expressing Cx43 formed functional heterocellular gap junctions with HMVEC monolayers within 30 minutes. In addition, immunocytochemistry revealed Cx43 localized to contact sites between Cx43 expressing tumor cells and endothelial cells. Quantitative analysis of diapedesis revealed a two-fold increase in diapedesis of Cx43 expressing cells compared to empty vector control cells. The expression of a functionally inactive Cx43 chimeric protein in HBL100 cells failed to increase migration efficiency, suggesting that the observed up-regulation of diapedesis in Cx43 expressing cells required heterocellular GJIC. This finding is further supported by the observation that blocking homocellular and heterocellular GJIC with carbenoxolone in co-cultures also reduced diapedesis of Cx43 expressing HBL100 tumor cells. CONCLUSION: Collectively, our results suggest that heterocellular GJIC between breast tumor cells and endothelial cells may be an important regulatory step during metastasis

    Similarities and differences in the autonomic control of airway and urinary bladder smooth muscle

    Get PDF
    The airways and the urinary bladder are both hollow organs serving very different functions, i.e. air flow and urine storage, respectively. While the autonomic nervous system seems to play only a minor if any role in the physiological regulation of airway tone during normal breathing, it is important in the physiological regulation of bladder smooth muscle contraction and relaxation. While both tissues share a greater expression of M2 than of M3 muscarinic receptors, smooth muscle contraction in both is largely mediated by the smaller M3 population apparently involving phospholipase C activation to only a minor if any extent. While smooth muscle in both tissues can be relaxed by β-adrenoceptor stimulation, this primarily involves β2-adrenoceptors in human airways and β3-adrenoceptors in human bladder. Despite activation of adenylyl cyclase by either subtype, cyclic adenosine monophosphate plays only a minor role in bladder relaxation by β-agonists; an important but not exclusive function is known in airway relaxation. While airway β2-adrenoceptors are sensitive to agonist-induced desensitization, β3-adrenoceptors are generally considered to exhibit much less if any sensitivity to desensitization. Gene polymorphisms exist in the genes of both β2- and β3-adrenoceptors. Despite being not fully conclusive, the available data suggest some role of β2-adrenoceptor polymorphisms in airway function and its treatment by receptor agonists, whereas the available data on β3-adrenoceptor polymorphisms and bladder function are too limited to allow robust interpretation. We conclude that the distinct functions of airways and urinary bladder are reflected in a differential regulation by the autonomic nervous system. Studying these differences may be informative for a better understanding of each tissue

    ReSETting PP2A tumour suppressor activity in blast crisis and imatinib-resistant chronic myelogenous leukaemia

    Get PDF
    The deregulated kinase activity of p210-BCR/ABL oncoproteins, hallmark of chronic myelogenous leukaemia (CML), induces and sustains the leukaemic phenotype, and contributes to disease progression. Imatinib mesylate, a BCR/ABL kinase inhibitor, is effective in most of chronic phase CML patients. However, a significant percentage of CML patients develop resistance to imatinib and/or still progresses to blast crisis, a disease stage that is often refractory to imatinib therapy. Furthermore, there is compelling evidence indicating that the CML leukaemia stem cell is also resistant to imatinib. Thus, there is still a need for new drugs that, if combined with imatinib, will decrease the rate of relapse, fully overcome imatinib resistance and prevent blastic transformation of CML. We recently reported that the activity of the tumour suppressor protein phosphatase 2A (PP2A) is markedly inhibited in blast crisis CML patient cells and that molecular or pharmacologic re-activation of PP2A phosphatase led to growth suppression, enhanced apoptosis, impaired clonogenic potential and decreased in vivo leukaemogenesis of imatinib-sensitive and -resistant (T315I included) CML-BC patient cells and/or BCR/ABL+ myeloid progenitor cell lines. Thus, the combination of PP2A phosphatase-activating and BCR/ABL kinase-inhibiting drugs may represent a powerful therapeutic strategy for blast crisis CML patients

    p53-dependent association between cyclin G and the B' subunit of protein phosphatase 2A.

    No full text
    We and others previously showed that cyclin G is a transcriptional target of the p53 tumor suppressor protein. However, cellular proteins which might form a complex with cyclin G have not yet been identified. To gain insight into the biological role of cyclin G, we used the yeast two-hybrid screen and isolated two mouse cDNAs encoding cyclin G-interacting proteins. Interestingly, both positive cDNAs encoded B' regulatory subunits of protein phosphatase 2A (PP2A). One clone encodes B'alpha, while the other clone codes for a new member of the B' family, B'beta. B'beta is 70% identical to other members of the B' family. B'alpha associated both in vitro and in vivo with cyclin G but not with the other mammalian cyclins. Furthermore, cyclin G formed a complex with B'alpha only after induction of p53 in p53 temperature-sensitive cell lines. These results indicate that cyclin G forms a specific complex with the B' subunit of PP2A and that complex formation is regulated by p53. Potential roles for the cyclin G-B' complex in p53-mediated pathways are discussed
    corecore