227 research outputs found

    Scanning reflectance spectroscopy (380-730nm): a novel method for quantitative high-resolution climate reconstructions from minerogenic lake sediments

    Get PDF
    High-resolution (annual to sub-decadal) quantitative reconstructions of climate variables are needed from a variety of paleoclimate archives across the world to place current climate change in the context of long-term natural climate variability. Rapid, high-resolution, non-destructive scanning techniques are required to produce such high-resolution records from lake sediments. In this study we explored the potential of scanning reflectance spectroscopy (VIS-RS; 380-730nm) to produce quantitative summer temperature reconstructions from minerogenic sediments of proglacial, annually laminated Lake Silvaplana, in the eastern Swiss Alps. The scanning resolution was 2mm, which corresponded to sediment deposition over 1-2years. We found correlations up to r=0.84 (p<0.05) for the calibration period 1864-1950, between six reflectance-dependent variables and summer (JJAS) temperature. These reflectance-dependent variables (e.g. slope of the reflectance 570/630nm, indicative of illite, biotite and chlorite; minimum reflectance at 690nm indicative of chlorite) indicate the mineralogical composition of the clastic sediments, which is, in turn, related to climate in the catchment of this particular proglacial lake. We used multiple linear regression (MLR) to establish a calibration model that explains 84% of the variance of summer (JJAS) temperature during the calibration period 1864-1950. We then applied the calibration model downcore to develop a quantitative summer temperature reconstruction extending back to AD 1177. This temperature reconstruction is in good agreement with two independent temperature reconstructions based on documentary data that extend back to AD 1500 and tree ring data that extend back to AD 1177. This study confirms the great potential of in situ scanning reflectance spectroscopy as a novel non-destructive technique to rapidly acquire high-resolution quantitative paleoclimate information from minerogenic lake sediment

    Testing a new multigroup inference approach to reconstructing past environmental conditions

    Get PDF
    8 páginas, 4 tablas.A new, quantitative, inference model for environmental reconstruction (transfer function), based for the first time on the simultaneous analysis of multigroup species, has been developed. Quantitative reconstructions based on palaeoecological transfer functions provide a powerful tool for addressing questions of environmental change in a wide range of environments, from oceans to mountain lakes, and over a range of timescales, from decades to millions of years. Much progress has been made in the development of inferences based on multiple proxies but usually these have been considered separately, and the different numeric reconstructions compared and reconciled post-hoc. This paper presents a new method to combine information from multiple biological groups at the reconstruction stage. The aim of the multigroup work was to test the potential of the new approach to making improved inferences of past environmental change by improving upon current reconstruction methodologies. The taxonomic groups analysed include diatoms, chironomids and chrysophyte cysts. We test the new methodology using two cold-environment training-sets, namely mountain lakes from the Pyrenees and the Alps. The use of multiple groups, as opposed to single groupings, was only found to increase the reconstruction skill slightly, as measured by the root mean square error of prediction (leave-one-out cross-validation), in the case of alkalinity, dissolved inorganic carbon and altitude (a surrogate for air-temperature), but not for pH or dissolved CO2. Reasons why the improvement was less than might have been anticipated are discussed. These can include the different life-forms, environmental responses and reaction times of the groups under study.The programming work was carried out when RT was on sabbatical leave in Blanes and Mondsee. Financial assistance for the visits, from Leverhulme and The Royal Society of Edinburgh, is gratefully acknowledged.Peer reviewe

    Chiral behavior of the B(s,d)-Bbar(s,d) mixing amplitude in the Standard Model and beyond

    Get PDF
    We compute the chiral logarithmic corrections to the Bd and Bs mixing amplitudes in the Standard Model and beyond. We then investigate the impact of the inclusion of the lowest-lying scalar heavy-light states to the decay constants and bag-parameters and show that this does not modify the pion chiral logarithms, but it does produce corrections which are competitive in size with the K- and eta-meson chiral logarithms. This conclusion is highly relevant to the lattice studies since the pion chiral logarithms represent the most important effect in guiding the chiral extrapolations of the lattice data for these quantities. Also important is to stress that the pion chiral logarithmic corrections are useful in guiding those extrapolations as long as Mpi << Delta, where Delta is the mass gap between the scalar and pseudoscalar heavy-light mesons.Comment: 16 pages, 5 figures (published version

    Minimal lepton flavor violating realizations of minimal seesaw models

    Full text link
    We study the implications of the global U(1)R symmetry present in minimal lepton flavor violating implementations of the seesaw mechanism for neutrino masses. In the context of minimal type I seesaw scenarios with a slightly broken U(1)R, we show that, depending on the R-charge assignments, two classes of generic models can be identified. Models where the right-handed neutrino masses and the lepton number breaking scale are decoupled, and models where the parameters that slightly break the U(1)R induce a suppression in the light neutrino mass matrix. We show that within the first class of models, contributions of right-handed neutrinos to charged lepton flavor violating processes are severely suppressed. Within the second class of models we study the charged lepton flavor violating phenomenology in detail, focusing on mu to e gamma, mu to 3e and mu to e conversion in nuclei. We show that sizable contributions to these processes are naturally obtained for right-handed neutrino masses at the TeV scale. We then discuss the interplay with the effects of the right-handed neutrino interactions on primordial B - L asymmetries, finding that sizable right-handed neutrino contributions to charged lepton flavor violating processes are incompatible with the requirement of generating (or even preserving preexisting) B - L asymmetries consistent with the observed baryon asymmetry of the Universe.Comment: 21 pages, 4 figures; version 2: Discussion on possible generic models extended, typos corrected, references added. Version matches publication in JHE

    Implications of Flavor Dynamics for Fermion Triplet Leptogenesis

    Full text link
    We analyze the importance of flavor effects in models in which leptogenesis proceeds via the decay of Majorana electroweak triplets. We find that depending on the relative strengths of gauge and Yukawa reactions the BLB-L asymmetry can be sizably enhanced, exceeding in some cases an order of magnitude level. We also discuss the impact that such effects can have for TeV-scale triplets showing that as long as the BLB-L asymmetry is produced by the dynamics of the lightest such triplet they are negligible, but open the possibility for scenarios in which the asymmetry is generated above the TeV scale by heavier states, possibly surviving the TeV triplet related washouts. We investigate these cases and show how they can be disentangled at the LHC by using Majorana triplet collider observables and, in the case of minimal type III see-saw models even through lepton flavor violation observables.Comment: 22 pages, 9 figures, extended discussion on collider phenomenology, references added. Version matches publication in JHE

    Predictions from Heavy New Physics Interpretation of the Top Forward-Backward Asymmetry

    Get PDF
    We derive generic predictions at hadron colliders from the large forward-backward asymmetry observed at the Tevatron, assuming the latter arises from heavy new physics beyond the Standard Model. We use an effective field theory approach to characterize the associated unknown dynamics. By fitting the Tevatron t \bar t data we derive constraints on the form of the new physics. Furthermore, we show that heavy new physics explaining the Tevatron data generically enhances at high invariant masses both the top pair production cross section and the charge asymmetry at the LHC. This enhancement can be within the sensitivity of the 8 TeV run, such that the 2012 LHC data should be able to exclude a large class of models of heavy new physics or provide hints for its presence. The same new physics implies a contribution to the forward-backward asymmetry in bottom pair production at low invariant masses of order a permil at most.Comment: 11 pages, 6 figures. v2: added remarks on EFT validity range, dijet bounds and UV completions; matches published versio

    The Machine Learning Landscape of Top Taggers

    Full text link
    Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.Comment: Yet another tagger included

    An Improved Standard Model Prediction Of BR(B -> tau nu) And Its Implications For New Physics

    Full text link
    The recently measured B -> tau nu branching ratio allows to test the Standard Model by probing virtual effects of new heavy particles, such as a charged Higgs boson. The accuracy of the test is currently limited by the experimental error on BR(B -> tau nu) and by the uncertainty on the parameters fB and |Vub|. The redundancy of the Unitarity Triangle fit allows to reduce the error on these parameters and thus to perform a more precise test of the Standard Model. Using the current experimental inputs, we obtain BR(B -> tau nu)_SM = (0.84 +- 0.11)x10^{-4}, to be compared with BR(B -> tau nu)_exp = (1.73 +- 0.34)x10^{-4}. The Standard Model prediction can be modified by New Physics effects in the decay amplitude as well as in the Unitarity Triangle fit. We discuss how to disentangle the two possible contributions in the case of minimal flavour violation at large tan beta and generic loop-mediated New Physics. We also consider two specific models with minimal flavour violation: the Type-II Two Higgs Doublet Model and the Minimal Supersymmetric Standard Model.Comment: 7 pages, 13 figures, 1 table. v2: added references and discussion of B -> D tau nu in the 2HDM. v3: added Bs->mumu in the 2HDM. Final version to appear in PL

    Model-independent constraints on new physics in b --> s transitions

    Get PDF
    We provide a comprehensive model-independent analysis of rare decays involving the b --> s transition to put constraints on dimension-six Delta(F)=1 effective operators. The constraints are derived from all the available up-to-date experimental data from the B-factories, CDF and LHCb. The implications and future prospects for observables in b --> s l+l- and b --> s nu nu transitions in view of improved measurements are also investigated. The present work updates and generalises previous studies providing, at the same time, a useful tool to test the flavour structure of any theory beyond the SM.Comment: 1+39 pages, 12 figures, 3 tables. v2: minor modifications, typos corrected, references added, version to be published in JHE
    corecore