11 research outputs found

    Intercontinental comparison of habitat levels of invasion between temperate North America and Europe

    Get PDF
    Several studies have demonstrated that floras of the New World contain larger proportions of alien species than those of the Old World; however, the differences in fine-scale invasion patterns are poorly known. We compared the levels of invasion in analogous habitats of two environmentally similar regions in temperate North America and Europe (the Carolinas and the Czech Republic), using comprehensive vegetation-plot databases. Native and alien vascular plant species were identified within 4165 vegetation plots assigned to 12 habitats occurring in both areas. The level of invasion was calculated for each habitat (1) as the proportion of aliens recorded cumulatively across multiple plots (habitat scale) and (2) as the mean proportion of aliens per plot (plot scale), both separately for all alien species and for the subgroup of aliens originating in one region and invading the other. The proportions of species native on one continent and invading the other were also calculated for each habitat to compare the alien species exchange between continents. Habitat levels of invasion showed remarkably similar patterns on the two continents. There were significant positive relationships for the levels of invasion, both for all alien species (habitat-scale R2 = 0.907; plot-scale R2 = 0.676) and for those that originated on the opposite continent (habitat-scale R2 = 0.624; plot-scale R2 = 0.708). In both regions, the most and the least invaded habitats were the same, but on average, North American habitats showed higher habitat-scale levels of invasion than their European counterparts. At the same time, a larger proportion of alien species was provided by European habitats for invasion to North America than vice versa. The consistent intercontinental pattern of habitat levels of invasion suggests that these levels are driven by similar mechanisms in distant regions. Habitat conditions are likely to have stronger effect on the level of invasion than the identity of alien species, as shown by similar levels of invasion in analogous habitats despite different geographical origins of alien species. The higher flux of alien species from Europe to North America is consistent with a generally higher level of invasion of North American habitats

    Phylogenetic structure of alien plant species pools from European donor habitats

    Get PDF
    Aim Many plant species native to Europe have naturalized worldwide. We tested whether the phylogenetic structure of the species pools of European habitats is related to the proportion of species from each habitat that has naturalized outside Europe (habitat’s donor role) and whether the donated species are more phylogenetically related to each other than expected by chance. Location Europe (native range), the rest of the world (invaded range). Time period Last c. 100 years. Major taxa studied Angiospermae. Methods We selected 33 habitats in Europe and analysed their species pools, including 9,636 plant species, of which 2,293 have naturalized outside Europe. We assessed the phylogenetic structure of each habitat as the difference between the observed and expected mean pairwise phylogenetic distance (MPD) for (a) the whole species pool and (b) subgroups of species that have naturalized outside Europe and those that have not. We used generalized linear models to test for the effects of the phylogenetic structure and the level of human influence on the habitat’s donor role. Results Habitats strongly to moderately influenced by humans often showed phylogenetically clustered species pools. Within the clustered species pools, those species that have naturalized outside Europe showed a random phylogenetic structure. Species pools of less human-influenced natural habitats varied from phylogenetically clustered to overdispersed, with donated naturalized species also often showing random patterns within the species pools. Donor roles in both habitat groups increased with increasing MPD within habitats. Main conclusions European human-influenced habitats donate closely related species that often naturalize in disturbed habitats outside their native range. Natural habitats donate species from different lineages with various ecological strategies that allow them to succeed in different habitats in the invaded range. However, the naturalized species donated by most European habitats are phylogenetically random subsets of their species pools

    The conjugate gradient method and its behavior in finite precision arithmetic

    No full text
    Cílem práce je shrnutí poznatků o chování metody sdružených gradientů v konečné aritmetice počítače a provedení řady numerických experimentů. Budou zkoumány problémy spojené s matematickým modelem výpočtů CG v konečné aritmetice.Katedra matematikyObhájenoThe goal is to summarize knowledge about the behavior of the conjugate gradient method in finite precision arithmetic, performing numerical experiments, and investigation of some problems connected with the mathematical model of finite precision CG computations

    Phylogenetic structure of alien plant species pools from European donor habitats

    No full text
    AimMany plant species native to Europe have naturalized worldwide. We tested whether the phylogenetic structure of the species pools of European habitats is related to the proportion of species from each habitat that has naturalized outside Europe (habitat’s donor role) and whether the donated species are more phylogenetically related to each other than expected by chance.LocationEurope (native range), the rest of the world (invaded range).Time periodLast c. 100 years. Major taxa studied Angiospermae.MethodsWe selected 33 habitats in Europe and analysed their species pools, including 9,636 plant species, of which 2,293 have naturalized outside Europe. We assessed the phylogenetic structure of each habitat as the difference between the observed and expected mean pairwise phylogenetic distance (MPD) for (a) the whole species pool and (b) subgroups of species that have naturalized outside Europe and those that have not. We used generalized linear models to test for the effects of the phylogenetic structure and the level of human influence on the habitat’s donor role.ResultsHabitats strongly to moderately influenced by humans often showed phylogenetically clustered species pools. Within the clustered species pools, those species that have naturalized outside Europe showed a random phylogenetic structure. Species pools of less human-influenced natural habitats varied from phylogenetically clustered to overdispersed, with donated naturalized species also often showing random patterns within the species pools. Donor roles in both habitat groups increased with increasing MPD within habitats.Main conclusionsEuropean human-influenced habitats donate closely related species that often naturalize in disturbed habitats outside their native range. Natural habitats donate species from different lineages with various ecological strategies that allow them to succeed in different habitats in the invaded range. However, the naturalized species donated by most European habitats are phylogenetically random subsets of their species pools.publishe

    Neophyte invasions in European grasslands

    Get PDF
    Questions The human‐related spread of alien plants has serious environmental and socioeconomic impacts. Therefore, it is important to know which habitats are most threatened by invasion and why. We studied a wide range of European grasslands to assess: (a) which alien species are the most successful invaders in grasslands; (b) how invasion levels differ across European regions (countries or their parts) and biogeographical regions; and (c) which habitat types are the most invaded. Location Europe. Methods We selected 97,411 grassland vegetation plots from the European Vegetation Archive (EVA) and assigned a native or alien status to each of the 8,212 vascular plant species found in these plots. We considered only neophytes (alien species introduced after 1500 AD), which we further divided according to their origin. We compared the levels of invasion using relative neophyte richness in the species pool, relative neophyte richness and cover per plot, and percentages of invaded plots among regions and habitats. Results Only 536 species, representing 6.5% of all grassland vascular plant species, were classified as neophytes. These were mostly therophytes or hemicryptophytes with low habitat specificity. Most of them were present in very few plots, while only three species were recorded in more than 1% of all plots (Onobrychis viciifolia, Erigeron annuus and Erigeron canadensis). Although invasion levels were generally low, we found more invaded plots in the Boreal and Continental regions. When considering only non‐European neophytes, the Pannonian region was the most invaded. Among different grassland habitats, sandy grasslands were most invaded, and alpine and oromediterranean grasslands least invaded. Conclusions In general, natural and semi‐natural European grasslands have relatively low levels of neophyte invasions compared with human‐made habitats or alluvial forests, as well as with grasslands on other continents. The most typical neophytes invading European grasslands are species with broad ecological niches
    corecore