93 research outputs found
Falls in People with Multiple Sclerosis
No embargo required.Abstract Falls are highly prevalent in people with multiple sclerosis (MS) and result in a range of negative consequences, such as injury, activity curtailment, reduced quality of life, and increased need for care and time off work. This narrative review aims to summarize key literature and to discuss future work needed in the area of fall prevention for people with MS. The incidence of falls in people with MS is estimated to be more than 50%, similar to that in adults older than 80 years. The consequences of falls are considerable because rate of injury is high, and fear of falling and low self-efficacy are significant problems that lead to activity curtailment. A wide range of physiological, personal, and environmental factors have been highlighted as potential risk factors and predictors of falls. Falls are individual and multifactorial, and, hence, approaches to interventions will likely need to adopt a multifactorial approach. However, the literature to date has largely focused on exercise-based interventions, with newer, more comprehensive interventions that use both education and exercise showing promising results. Several gaps in knowledge of falls in MS remain, in particular the lack of standardized definitions and outcome measures, to enable data pooling and comparison. Moving forward, the involvement of people with MS in the design and evaluation of programs is essential, as are approaches to intervention development that consider implementation from the outset.</jats:p
A personalized, intense physical rehabilitation program improves walking in people with multiple sclerosis presenting with different levels of disability: A retrospective cohort
Copyright © 2015 Kalron et al.Background: People with multiple sclerosis (PwMS) endure walking limitations. To address this restriction, various physical rehabilitation programs have been implemented with no consensus regarding their efficacy. Our objective was to report on the efficacy of an integrated tailored physical rehabilitation program on walking in people with multiple sclerosis categorized according to their level of neurological disability. Methods: Retrospective data were examined and analyzed. Specifically, data obtained from all patients who participated in the Multiple Sclerosis Center's 3 week rehabilitation program were extracted for in depth exploration. The personalized rehabilitation program included three major components modified according to the patient's specific impairments and functional needs: (a) goal directed physical therapy (b) moderately intense aerobic exercise training on a bicycle ergometer and (c) aquatic therapy chiefly oriented to body structures appropriate to movement. Gait outcome measurements included the 10 meter, 20 meter, Timed up and go and 2 minute walking tests measured pre and post the rehabilitation program. Three hundred and twelve people with relapsing-remitting multiple sclerosis were included in the final analysis. Patients were categorized into mild (n = 87), moderate (n = 104) and severely (n = 121) disabled groups. Results: All clinical walking outcome measurements demonstrated statistically significant improvements, however, only an increase in the 2 minute walking test was above the minimal clinical difference value. The moderate and severe groups considerably improved compared to the mild gait disability group. Mean change scores (%) of the pre-post intervention period of the 2 minute walking test were 19.0 (S.E. = 3.4) in the moderate group, 16.2 (S.E. = 5.4) in the severe group and 10.9 (S.E. = 2.3) in the mild gait disability group. Conclusions: We presented comprehensive evidence verifying the effects of an intense goal-directed physical rehabilitation program on ambulation in people with multiple sclerosis presenting with different neurological impairment levels
Motor Fatigue Measurement by Distance-Induced Slow Down of Walking Speed in Multiple Sclerosis
Background: Motor fatigue and ambulation impairment are prominent clinical features of
people with multiple sclerosis (pMS). We hypothesized that a multimodal and comparative
assessment of walking speed on short and long distance would allow a better delineation and
quantification of gait fatigability in pMS.
Objectives: To compare 4 walking paradigms: the timed 25-foot walk (T25FW), a corrected
version of the T25FW with dynamic start (T25FW+), the timed 100-meter walk (T100MW)
and the timed 500-meter walk (T500MW).
Methods: Thirty controls and 81 pMS performed the 4 walking tests in a single study visit.
Results: The 4 walking tests were performed with a slower WS in pMS compared to controls
even in subgroups with minimal disability. The finishing speed of the last 100-meter of the
T500MW was the slowest measurable WS whereas the T25FW+ provided the fastest
measurable WS. The ratio between such slowest and fastest WS (Deceleration Index, DI) was
significantly lower only in pMS with EDSS 4.0-6.0, a pyramidal or cerebellar functional
system score reaching 3 or a maximum reported walking distance !4000m.
Conclusion: The motor fatigue which triggers gait deceleration over a sustained effort in pMS
can be measured by the WS ratio between performances on a very short distance and the
finishing pace on a longer more demanding task. The absolute walking speed is abnormal
early in MS whatever the distance of effort when patients are unaware of ambulation
impairment. In contrast, the DI-measured ambulation fatigability appears to take place later in the disease course
The effects of prolonged wear of textured shoe insoles on gait, foot sensation and proprioception in people with Multiple Sclerosis: protocol for a randomised controlled trial
Background: Many people with multiple sclerosis experience problems with walking, which can make daily activities difficult and often leads to falls. Foot sensation plays an important role in keeping the body balanced whilst walking; however, people with multiple sclerosis often have poor sensation on the soles of their feet. Wearing a specially designed shoe insole, which enhances plantar sensory information, could help people with multiple sclerosis to walk better. This study will explore whether long-term wear of a textured insole can improve walking in people with multiple sclerosis
Getting the right balance: insole design alters the static balance of people with diabetes and neuropathy
BACKGROUND: Over 1 in 3 older people with diabetes sustain a fall each year. Postural instability has been identified as independent risk factor for falls within people with Diabetic Peripheral Neuropathy (DPN). People with DPN, at increased risk of falls, are routinely required to wear offloading insoles, yet the impact of these insoles on postural stability and postural control is unknown. The aim of this study was to evaluate the effect of a standard offloading insole and its constituent parts on the balance in people with DPN. METHODS: A random sample of 50 patients with DPN were observed standing for 3 × 30 s, and stepping in response to a light, under five conditions presented in a random order; as defined by a computer program; 1) no insole, 2) standard diabetic: a standard offloading insole made from EVA/poron®, and three other insoles with one design component systematically altered 3) flat: diabetic offloading insole with arch fill removed, 4) low resilient memory: diabetic offloading insole with the cover substituted with low resilience memory V9, 5) textured: diabetic offloading insole with a textured PVC surface added (Algeos Ltd). After each condition participants self-rated perceived steadiness. RESULTS: Insole design effected static balance and balance perception, but not stepping reaction time in people with DPN. The diabetic and memory shaped insoles (with arch fill) significantly increased centre of pressure velocity (14 %, P = 0.006), (13 %, P = 0.001), and path length (14 %, P = 0.006), (13 %, P = 001), when compared to the no insole condition. The textured shaped and flat soft insole had no effect on static balance when compared to the no insole condition (P > 0.05). CONCLUSION: Insoles have an effect on static balance but not stepping reaction time. This effect is independent of neuropathy severity. The addition of a textured cover seems to counter the negative effect of an arch fill, even in participants with severe sensation loss. Static balance is unaffected by material softness or resilience. Current best practice of providing offloading insoles, with arch fill, to increase contact area and reduce peak pressure could be making people more unstable. Whilst flat, soft insoles maybe the preferable design option for those with poor balance. There is a need to develop an offloading insole that can reduce diabetic foot ulcer risk, without compromising balance
Searching for the “Active Ingredients” in Physical Rehabilitation Programs Across Europe, Necessary to Improve Mobility in People With Multiple Sclerosis: A Multicenter Study
Background. Physical rehabilitation programs can lead to improvements in mobility in people
with multiple sclerosis (PwMS). Objective: Identify which rehabilitation program elements
are employed in real life and how they might impact mobility improvement in PwMS.
Methods. Participants were divided into improved and non-improved mobility groups based
on changes observed in the Multiple Sclerosis Walking Scale-12 following multimodal
physical rehabilitation programs. Analyses were performed at group and subgroup (mild and
moderate-severe disability) levels. Rehabilitation program elements included: setting; number
of weeks; number of sessions; total duration, therapy format (individual, group, autonomous),
therapy goals and therapeutic approaches. Results. The study comprised 279 PwMS from 17
European centers. PwMS in the improved group received more sessions of individual therapy
in both subgroups. In the mildly disabled group, 60.9% of the improved received resistance
training, whereas, 68.5% of the non-improved, received self-stretching. In the moderatelyseverely disabled group, 31.4% of the improved, received aerobic training, while 50.4% of the
non-improved, received passive mobilization/stretching. Conclusions. We believe that our
findings are an important step in opening the black-box of physical rehabilitation, imparting
guidance and assisting future research in defining characteristics of effective physical
rehabilitation
An exploratory study on the acute effects of proprioceptive exercise and/or neuromuscular taping on balance performance
Background: This study aimed at investigating the acute effects of combined EXERCISE and TAPING in comparison to isolated proprioceptive exercise (EXERCISE) and ankle neuromuscular taping (TAPING) on one-leg stability performance in rugby players. Methods: Stability tests, performed on a stabilometric platform, were assessed for stability before and after above interventions. Performed stability tests were one-leg static stance (dominant leg and non-dominant leg) each with eyes open and eyes closed. The assessed dependent variables were: centre of pressure (CoP) path length; CoP speed; medio-lateral, and anterior-posterior sway. Sixteen male rugby players (27.3 \ub1 3.3 years; 177.3 \ub1 7.3 cm; 88.8 \ub1 15.2 kg) from a non-professional rugby team were tested in all above conditions, according to a cross-over study design. Results: Most of investigated variables improved following EXERCISE + TAPING (CoP path length-18.2/-15.6%, CoP speed-22.8/-17.7%, and anterior-posterior sway-21.0/-16.3%), in comparison with the other two protocols. EXERCISE + TAPING improved the stability control by combining the effects of both proprioceptive exercise and neuromuscular taping. Conclusions: Such findings could suggest the benefits of planning long-term strategies using EXERCISE + TAPING protocols for improving the functional stability and for preventing re-occuring injuries
- …