22 research outputs found

    A sustainable solution for electricity generation using thermo-acoustic technology

    Get PDF
    Abstract: This work explores the use of thermo-acoustic system as alternative technology for electricity generation. This technology is proposed as a potential replacement for low-cost electrical power generation because of its simplicity and lack of moving parts. Thermo-acoustic generators providing clean electrical energy to power small appliances. The energy conversion from heat into sound wave is done within thermo-acoustic engine. The latter is coupled to a linear alternator for electricity generation. The study investigates the influence of the geometrical configuration of the device on to the whole functionality of the generator. The paper studies the technology through experimental trails performed using a simple arrangement to simulate the generator. The experiment is conducted in phases; the first phase identifies the best geometrical configuration of the thermo-acoustic engine by measuring the sound pressure level and the temperatures. The second phase consist of measuring the electricity generated using a Loudspeaker. The results obtained show the potential for this sustainable solution for electricity generation

    Detector requirements for single mask edge illumination x-ray phase contrast imaging applications

    Full text link
    Edge illumination (EI) is a non-interferometric X-ray phase contrast imaging (XPCI) method that has been successfully implemented with conventional polychromatic sources, thanks to its relaxed coherence requirements. Like other XPCI methods, EI enables the retrieval of absorption, refraction and ultra-small angle X-ray scattering (USAXS) signals. However, current retrieval algorithms require three input frames, which have so far been acquired under as many different illumination conditions, in separate exposures. These illumination conditions can be achieved by deliberately misaligning the set-up in different ways. Each one of these misaligned configurations can then be used to record frames containing a mixture of the absorption, refraction and scattering signals. However, this acquisition scheme involves lengthy exposure times, which can also introduce errors to the retrieved signals. Such errors have, so far, been mitigated by careful image acquisition and analysis. However, further reduction to image acquisition time and errors due to sample mask/sample movement can increase the advantages offered by the EI technique, and enable targeting more challenging applications. In this paper, we describe two simplified set-ups that exploit state-of-the-art detector technologies to achieve single-shot multi-modal imaging.Comment: 10 pages, 5 figures, Position Sensitive Detectors 11 conferenc

    Signal of harm in morphine use in adults with acute pulmonary oedema: A rapid systematic review

    Get PDF
    Background. Heart failure affects nearly 65 million people globally, resulting in recurrent hospital admissions and substantial healthcare expenditure. The use of morphine in the management of acute pulmonary oedema remains controversial, with conflicting guidance and significant variation in practice. Synthesised evidence is needed to inform standard treatment guidelines and clinical practice. Objective. To determine whether morphine should be used in the treatment of acute pulmonary oedema (APE) in adults. Methods. A rapid review of systematic reviews of randomised controlled trials or observational studies, and then randomised controlled trials, was conducted searching three electronic databases (PubMed, Embase, Cochrane Library) and one clinical trial registry on 12 February 2022. We used a prespecified protocol following Cochrane rapid review methods and aligned to the National Standard Treatment Guidelines and Essential Medicines List methodology. We first considered relevant high-quality systematic reviews of randomised controlled trials or observational studies, then (if required) randomised controlled trials to inform time-sensitive or urgent evidence requests, clinical practice, policy, or standard treatment guidelines. Results. We identified four systematic reviews of observational studies. The two most relevant, up-to-date, and highest-quality reviews were used to inform evidence for critical outcomes. Morphine may increase in-hospital mortality (odds ratio (OR) 1.78; 95% confidence interval (CI) 1.01 - 3.13; low certainty of evidence; six observational studies, n=151 735 participants), resulting in 15 more per 1 000 hospital deaths, ranging from 0 to 40 more hospital deaths. Morphine may result in a large increase in invasive mechanical ventilation (OR 2.72; 95% CI 1.09 - 6.80; low certainty of evidence; four observational studies, n=167 847 participants), resulting in 45 more per 1 000 ventilations, ranging from 2 more to 136 more. Adverse events and hospital length of stay were not measured across reviews or trials. Conclusion. Based on the most recent, relevant and best-available quality evidence, morphine use in adults with APE may increase in-hospital and all-cause mortality and may result in a large increase in the need for invasive mechanical ventilation compared to not using morphine. Recommending against the use of morphine in pulmonary oedema may improve patient outcomes. Disinvesting in morphine for this indication may result in cost savings, noting the possible accrued benefits of fewer patients requiring invasive ventilation and management of morphine-related side-effects

    A compact system for intraoperative specimen imaging based on edge illumination x-ray phase contrast

    Get PDF
    “This is an author-created, un-copyedited version of an article accepted for publication/published in Physics in Medicine & Biology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-6560/ab4912

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore