22 research outputs found

    Dietary patterns and prevalence of wasting among street children in Lilongwe, Malawi

    Get PDF
    Street children are persons under the age of 18 years who spend all or most of their time on the streets as a result of many social problems within their communities. Although the number of street children is unknown in Malawi, the problem is thought to be increasing. In a cross-sectional study of 36 street children in Lilongwe,  Malawi, dietary practices and the prevalence of wasting were assessed to provide information on the risk of poor dietary intake and malnutrition in this population. A food frequency  questionnaire and 24-hour dietary recalls were used to determine dietary practices, while anthropometric measurements were  taken to assess the prevalence of low weight-for-height (wasting). Because of their high mobility, the participants were recruited using purposive sampling, primarily around the streets that lead to Lilongwe main market. A qualitative checklist was used to  identify prospective participants, and interviews were only done after the respondent had given informed assent. The study  showed that most (91.7%) of the street children are boys aged between 10 and 12 years (47.2%), largely illiterate (58.3%),  sleep at home (41.6%), and have both parents still living (55.6%). Through begging and engaging in piece work, 61.1% of the children indicated that they earn between US0.55andUS0.55 and US1.09 per day. The majority (72.2%) use the money solely to buy food from street vendors and restaurants. Foods that are mostly eaten on a daily basis include nsima (100%), rice (50%),  confectionery (44.4%), and mangoes (41.7%). On the other hand, foods that are eaten three times a week are fish (80.6%),  chicken (58.3%), potatoes (36.1%), cookies (19.4%), pumpkin leaves (19.4%), and bananas (13.9%). For the majority of the children, fruits and  vegetables are mostly eaten once a week. Assessment of the children’s nutritional status showed that up to 8.4% were wasted (<-2 weight-forheight Z-scores), the majority (5.6%) severely (<-3 weight-for-height Z-scores). Limited as it is in terms of sample size and breath, the study forms a stepping stone for investigating in more detail, food and nutrition issues that affect street children in Malawi.Key words: Malawi, cross-sectional study, dietary assessment, street children, wastin

    Dietary iron intakes based on food composition data may underestimate the contribution of potentially exchangeable contaminant iron from soil

    Get PDF
    Iron intakes calculated from one-day weighed records were compared with those from same day analyzed duplicate diet composites collected from 120 Malawian women living in two rural districts with contrasting soil mineralogy and where threshing may contaminate cereals with soil iron. Soils and diet composites from the two districts were then subjected to a simulated gastrointestinal digestion and iron availability in the digests measured using a Caco-2 cell model. Median analyzed iron intakes (mg/d) were higher (p < 0.001) than calculated intakes in both Zombwe (16.6 vs. 10.1 mg/d) and Mikalango (29.6 vs. 19.1 mg/d), attributed to some soil contaminant iron based on high Al and Ti concentrations in diet composites. A small portion of iron in acidic soil from Zombwe, but not Mikalango calcareous soil, was bioavailable, as it induced ferritin expression in the cells, and may have contributed to higher plasma ferritin and total body iron for the Zombwe women reported earlier, despite lower iron intakes. In conclusion, iron intakes calculated from food composition data were underestimated, highlighting the importance of analyzing duplicate diet composites where extraneous contaminant iron from soil is likely. Acidic contaminant soil may make a small but useful contribution to iron nutrition

    Urine selenium concentration is a useful biomarker for assessing population level selenium status

    Get PDF
    Plasma selenium (Se) concentration is an established population level biomarker of Se status, especially in Se-deficient populations. Previously observed correlations between dietary Se intake and urinary Se excretion suggest that urine Se concentration is also a potentially viable biomarker of Se status. However, there are only limited data on urine Se concentration among Se-deficient populations. Here, we test if urine is a viable biomarker for assessing Se status among a large sample of women and children in Malawi, most of whom are likely to be Se-deficient based on plasma Se status. Casual (spot) urine samples (n = 1406) were collected from a nationally representative sample of women of reproductive age (WRA, n =741) and school aged children (SAC, n=665) across Malawi as part of the 2015/16 Demographic and Health Survey. Selenium concentration in urine was determined using inductively coupled plasma mass spectrometry (ICP-MS). Urinary dilution corrections for specific gravity, osmolality, and creatinine were applied to adjust for hydration status. Plasma Se status had been measured for the same survey participants. There was between-cluster variation in urine Se concentration that corresponded with variation in plasma Se concentration, but not between households within a cluster, or between individuals within a household. Corrected urine Se concentrations explained more of the between-cluster variation in plasma Se concentration than uncorrected data. These results provide new evidence that urine may be used in the surveillance of Se status at the population level in some groups. This could be a cost-effective option if urine samples are already being collected for other assessments, such as for iodine status analysis as in the Malawi and other national Demographic and Health Surveys

    Spatial analysis of urine zinc (Zn) concentration for women of reproductive age and school age children in Malawi

    Get PDF
    Zinc (Zn) is an essential micronutrient, and Zn deficiency remains a major global public health challenge. Recognised biomarkers of population Zn status include blood plasma or serum Zn concentration and proxy data such as dietary Zn intake and prevalence of stunting. Urine Zn concentration is rarely used to assess population Zn status. This study assessed the value of urine Zn concentration as a biomarker of population Zn status using a nationally representative sample of non-pregnant women of reproductive age (WRA) and school-aged children (SAC) in Malawi. Spot (casual) urine samples were collected from 741 WRA and 665 SAC. Urine Zn concentration was measured by inductively coupled plasma mass spectrometry with specific gravity adjustment for hydration status. Data were analysed using a linear mixed model with a spatially correlated random effect for between-cluster variation. The effect of time of sample collection (morning or afternoon), and gender (for SAC), on urine Zn concentration were examined. There was spatial dependence in urine Zn concentration between clusters among SAC but not WRA, which indicates that food system or environmental factors can influence urine Zn concentration. Mapping urine Zn concentration could potentially identify areas where the prevalence of Zn deficiency is greater and thus where further sampling or interventions might be targeted. There was no evidence for differences in urine Zn concentration between gender (P = 0.69) or time of sample collection (P = 0.85) in SAC. Urine Zn concentration was greater in afternoon samples for WRA (P = 0.003). Relationships between urine Zn concentration, serum Zn concentration, dietary Zn intake, and potential food systems covariates warrant further study

    Anemia in children aged 6–59 months was significantly associated with maternal anemia status in rural Zimbabwe.

    Get PDF
    Globally, anemia is a public health problem affecting mostly women of reproductive age (WRA, n = 452) and children aged 6–59 months (n = 452) from low- and lower-middle-income countries. This cross-sectional study assessed the prevalence and determinants of anemia in WRA and children aged 6–59 months in rural Zimbabwe. The venous blood sample was measured for hemoglobin utilizing a HemoCue machine. Anthropometric indices were assessed and classified based on World Health Organization standards. Socioeconomic characteristics were assessed. The median (±inter quartile range (IQR)) age of WRA was 29 ± 12 years and that for children was 29 ± 14 months. The prevalence of anemia was 29.6% and 17.9% in children and WRA, respectively, while the median (±IQR) hemoglobin levels were 13.4 ± 1.8 and 11.7 ± 1.5 g/dl among women and children, respectively. Multiple logistic regression analysis was used to assess determinants of anemia. Anemia in children was significantly associated with maternal anemia (odds ratio (OR) = 2.02; 95% CI 1.21–3.37; p =.007) and being a boy (OR = 0.63; 95% CI 0.41–0.95; p =.029), while anemia in WRA was significantly associated with the use of unimproved dug wells as a source of drinking water (OR = 0.36; 95% CI 0.20–0.66; p =.001) and lack of agricultural land ownership (OR = 0.51; 95% CI 0.31–0.85; p =.009). Anemia is a public health problem in the study setting. The positive association between maternal and child anemia reflects the possibility of cross-generational anemia. Therefore, interventions that focus on improving preconceptual and maternal nutritional status may help to reduce anemia in low-income settings

    Urine Se concentration poorly predicts plasma Se concentration at sub-district scales in Zimbabwe, limiting its value as a biomarker of population Se status

    Get PDF
    Introduction: The current study investigated the value of urine selenium (Se) concentration as a biomarker of population Se status in rural sub-Saharan Africa. Method: Urine and plasma Se concentrations were measured among children aged 6–59 months (n = 608) and women of reproductive age (WRA, n = 781) living in rural Zimbabwe (Murehwa, Shamva, and Mutasa districts) and participating in a pilot national micronutrient survey. Selenium concentrations were measured by inductively coupled plasma-mass spectrometry (ICP-MS), and urine concentrations were corrected for hydration status. Results: The median (Q1, Q3) urine Se concentrations were 8.4 ÎŒg/L (5.3, 13.5) and 10.5 ÎŒg/L (6.5, 15.2) in children and WRA, respectively. There was moderate evidence for a relationship between urine Se concentration and plasma Se concentration in children (p = 0.0236) and WRA (p = < 0.0001), but the relationship had poor predictive value. Using previously defined thresholds for optimal activity of iodothyronine deiodinase (IDI), there was an association between deficiency when indicated by plasma Se concentrations and urine Se concentrations among WRA, but not among children. Discussion: Urine Se concentration poorly predicted plasma Se concentration at sub-district scales in Zimbabwe, limiting its value as a biomarker of population Se status in this context. Further research is warranted at wider spatial scales to determine the value of urine Se as a biomarker when there is greater heterogeneity in Se exposure

    Dietary mineral supplies in Africa

    Get PDF
    Dietary micronutrient deficiencies (MNDs) are widespread, yet their prevalence can be difficult to assess. Here, we estimate MND risks due to inadequate intakes for seven minerals in Africa using food supply and composition data, and consider the potential of food-based and agricultural interventions. Food Balance Sheets (FBSs) for 46 countries were integrated with food composition data to estimate per capita supply of calcium (Ca), copper (Cu), iron (Fe), iodine (I), magnesium (Mg), selenium (Se) and zinc (Zn), and also phytate. Deficiency risks were quantified using an estimated average requirement (EAR) ‘cut-point’ approach. Deficiency risks are highest for Ca (54% of the population), followed by Zn (40%), Se (28%) and I (19%, after accounting for iodized salt consumption). The risk of Cu (1%) and Mg (<1%) deficiency are low. Deficiency risks are generally lower in the north and west of Africa. Multiple MND risks are high in many countries. The population-weighted mean phytate supply is 2770 mg capita−1 day−1. Deficiency risks for Fe are lower than expected (5%). However, ‘cut-point’ approaches for Fe are sensitive to assumptions regarding requirements; e.g. estimates of Fe deficiency risks are 43% under very low bioavailability scenarios consistent with high-phytate, low-animal protein diets. Fertilization and breeding strategies could greatly reduce certain MNDs. For example, meeting HarvestPlus breeding targets for Zn would reduce dietary Zn deficiency risk by 90% based on supply data. Dietary diversification or direct fortification is likely to be needed to address Ca deficiency risks

    Modeling food fortification contributions to micronutrient requirements in Malawi using Household Consumption and Expenditure Surveys.

    Get PDF
    Large-scale food fortification may be a cost-effective intervention to increase micronutrient supplies in the food system when implemented under appropriate conditions, yet it is unclear if current strategies can equitably benefit populations with the greatest micronutrient needs. This study developed a mathematical modeling framework for comparing fortification scenarios across different contexts. It was applied to model the potential contributions of three fortification vehicles (oil, sugar, and wheat flour) toward meeting dietary micronutrient requirements in Malawi through secondary data analyses of a Household Consumption and Expenditure Survey. We estimated fortification vehicle coverage, micronutrient density of the diet, and apparent intake of nonpregnant, nonlactating women for nine different micronutrients, under three food fortification scenarios and stratified by subpopulations across seasons. Oil and sugar had high coverage and apparent consumption that, when combined, were predicted to improve the vitamin A adequacy of the diet. Wheat flour contributed little to estimated dietary micronutrient supplies due to low apparent consumption. Potential contributions of all fortification vehicles were low in rural populations of the lowest socioeconomic position. While the model predicted large-scale food fortification would contribute to reducing vitamin A inadequacies, other interventions are necessary to meet other micronutrient requirements, especially for the rural poor

    A pilot survey of selenium status and its geospatial variation among children and women in three rural districts of Zimbabwe

    Get PDF
    IntroductionSelenium (Se) deficiency is increasingly recognized as a public health problem in sub-Saharan Africa.MethodsThe current cross-sectional study assessed the prevalence and geospatial patterns of Se deficiency among children aged 6–59 months (n = 741) and women of 15–49 years old (n = 831) selected by simple random sampling in rural Zimbabwe (Murewa, Shamva, and Mutasa districts). Venous blood samples were collected and stored according to World Health Organization guidelines. Plasma Se concentration was determined by inductively coupled plasma-mass spectrometry.ResultsMedian, Q1, and Q3 plasma Se concentrations were 61.2, 48.7, and 73.3 ÎŒg/L for women and 40.5, 31.3, and 49.5 ÎŒg/L for children, respectively. Low plasma Se concentrations (9.41 ÎŒg/L in children and 10.20 ÎŒg/L in women) indicative of severe Se deficiency risk was observed. Overall, 94.6% of children and 69.8% of women had sub-optimal Se status defined by plasma Se concentrations of &lt;64.8 ÎŒg/L and &lt;70 ÎŒg/L, respectively.DiscussionHigh and widespread Se deficiency among women and children in the three districts is of public health concern and might be prevalent in other rural districts in Zimbabwe. Geostatistical analysis by conditional kriging showed a high risk of Se deficiency and that the Se status in women and children in Murewa, Shamva, and Mutasa districts was driven by short-range variations of up to ⁓12 km. Selenium status was homogenous within each district. However, there was substantial inter-district variation, indicative of marked spatial patterns if the sampling area is scaled up. A nationwide survey that explores the extent and spatial distribution of Se deficiency is warranted

    Can selenium deficiency in Malawi be alleviated through consumption of agro-biofortified maize flour? Study protocol for a randomised, double-blind, controlled trial

    Get PDF
    Micronutrient deficiencies including selenium (Se) are widespread in Malawi and potentially underlie a substantial disease burden, particularly among poorer and marginalised populations. Concentrations of Se in staple cereal crops can be increased through application of Se fertilisers – a process known as agronomic biofortification (agro-biofortification) – and this may contribute to alleviating deficiencies. The Addressing Hidden Hunger with Agronomy (AHHA) trial aims to establish the efficacy of this approach for improving Se status in rural Malawi
    corecore