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A B S T R A C T

Plasma selenium (Se) concentration is an established population level biomarker of Se status, especially in Se-
deficient populations. Previously observed correlations between dietary Se intake and urinary Se excretion
suggest that urine Se concentration is also a potentially viable biomarker of Se status. However, there are only
limited data on urine Se concentration among Se-deficient populations. Here, we test if urine is a viable bio-
marker for assessing Se status among a large sample of women and children in Malawi, most of whom are likely
to be Se-deficient based on plasma Se status. Casual (spot) urine samples (n= 1406) were collected from a
nationally representative sample of women of reproductive age (WRA, n=741) and school aged children (SAC,
n=665) across Malawi as part of the 2015/16 Demographic and Health Survey. Selenium concentration in urine
was determined using inductively coupled plasma mass spectrometry (ICP-MS). Urinary dilution corrections for
specific gravity, osmolality, and creatinine were applied to adjust for hydration status. Plasma Se status had been
measured for the same survey participants. There was between-cluster variation in urine Se concentration that
corresponded with variation in plasma Se concentration, but not between households within a cluster, or be-
tween individuals within a household. Corrected urine Se concentrations explained more of the between-cluster
variation in plasma Se concentration than uncorrected data. These results provide new evidence that urine may
be used in the surveillance of Se status at the population level in some groups. This could be a cost-effective
option if urine samples are already being collected for other assessments, such as for iodine status analysis as in
the Malawi and other national Demographic and Health Surveys.

1. Introduction

Selenium (Se) is an essential trace element in humans where it is an
integral component of ~25 selenoproteins. It has roles in immune

function, responses to oxidative stress, and cognitive development
(Burk and Hill, 2009; Fairweather-Tait et al., 2011). Biomarkers used to
assess Se status include blood (whole, plasma or serum), toenails, hair,
and urine. Each of these biomarkers has its strengths and limitations
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which are influenced by contextual (e.g. population Se-status) as well as
logistical and technical (e.g. access to instrumentation) factors (Hays
et al., 2014).

Blood Se concentration (whole, plasma or serum) is regarded as the
most informative biomarker of Se status at both the individual and
population level (Fairweather-Tait et al., 2011; Longnecker et al., 1996;
Yang et al., 1989). Typically, approximately 50% of the body's selenium
is contained in the blood system, and blood Se concentration is rela-
tively responsive to short-to-medium term Se intake or exposure.
Plasma Se concentrations of 87 ng mL−1 and 65 ng mL−1 are used as
thresholds of the optimal activities of the selenoproteins glutathione
peroxidase 3 (GPx3) and iodothyronine deiodinase (IDI), respectively,
in adults (Thomson, 2004). Challenges of using blood Se concentration
as a biomarker of Se status include the invasive nature of sampling,
including personal sensitivities regarding use of blood samples (e.g. for
HIV testing) and cultural beliefs (e.g. ‘blood sucking’ and witchcraft in
some countries). Less-invasive biomarkers of Se status, such as toenail
and hair Se concentration, have been used (Fairweather-Tait et al.,
2011; Hays et al., 2014; Longnecker et al., 1996). However, due to
potential contamination from dirt and hair cleaning products, their use
has been limited.

Urine Se concentration can also been used to assess Se status
(Fairweather-Tait et al., 2011; Hays et al., 2014). Urine is the main
route of Se excretion, primarily in the form of selenosugar (Combs,
2015). Due to intra-individual variation in hydration-driven urinary
flow rate, 24-h urine collection is regarded as the most appropriate
method for measuring urine elemental concentrations (Nermell et al.,
2008). However, the need for multiple collections limits the use of urine
concentration to smaller populations due to logistical challenges from
individuals (Yeh et al., 2015). In studies that have analyzed elemental
concentrations of a single-void (‘spot’ or 'casual') urine as a biomarker
of status, challenges have been reported due to variation in hydration
state, fluid intake, physical activity, temperature, protein malnutrition
and genetic factors (Cockell, 2015; Combs, 2015; Nermell et al., 2008).
To account for the effect of hydration status (urine dilution) on intra-
and inter- individual variation in urine elemental concentrations,
creatinine, osmolality and specific gravity corrections can be applied
(Hays et al., 2014; Middleton et al., 2016a, 2018). For a dilution cor-
rection to perform robustly, it must meet a number of prerequisites,
including: (i) be an accurate physicochemical measure of dilution/
concentration; (ii) be applied in a manner representative of underlying
physiological changes in analyte excretion in relation to fluctuations in
urinary flow rate. Each of these corrections is likely to have advantages
or disadvantages over the others in different contexts. For example,
creatinine correction can be affected by protein energy malnutrition,
which reduces creatinine excretion (O’Brien et al., 2017; Yeh et al.,
2015), whilst osmolality is affected by age, sex, race/ethnic and body
mass index (Miller et al., 2004; O’Brien et al., 2017), although less-so
than creatinine. Specific gravity is lower cost, easy to conduct in the
field, and less influenced by age, gender and body size (Suwazono et al.,
2005). However, specific gravity can be affected by medical conditions
that increase urinary glucose and protein (Moriguchi et al., 2005).
Corrections are not routinely applied during urinary iodine population
surveillance (Watts et al., 2019).

The aim of this study was to test if Se concentration in casual urine
is a potentially useful biomarker for population-level Se status and to
examine the effect of correction for urinary dilution using three routi-
nely applied methods: specific gravity, osmolality and creatinine. Our
study focused on a design-unbiased national sample of non-pregnant
women of reproductive age (WRA) and school-aged children (SAC) in
Malawi. These groups have previously been shown to be Se-deficient
based on their plasma Se concentration (Phiri et al., 2019).

2. Methods

Our study was conducted as part of the 2015–16 Malawi

Demographic and Health Survey (MDHS) and National Micronutrient
Survey (NMS), for which blood plasma Se concentration has been re-
ported previously (Phiri et al., 2019). The MDHS and NMS are periodic
surveys through which blood and urine specimens are collected from a
representative sample of the Malawian population and tested for var-
ious health and nutrition indicators. During the 2015–16 NMS, casual
urine samples were collected from WRA (age 15–49) and SAC (age
6–14, female and male) for primary analysis of urinary iodine. These
data therefore allow urine and plasma from the same individuals to be
compared via a unique anonymized identifier. The sampling design also
provides a powerful comparison at individual, household and Enu-
meration Area (EA), i.e. 'cluster' level. Individuals within household and
households within a cluster are more likely to have similar dietary
patterns, and share the same environmental exposure, which may in-
fluence urine Se concentration.

2.1. Sampling

Study design and methods are described in detail elsewhere (NSO,
2017; NSO/CHSU/CDC, 2017; Phiri et al., 2019). Briefly, the 2015–16
NMS represented a subsample of the wider cross-sectional study of the
2015–16 MDHS with a two-stage cluster sampling design. The study
was conducted in all 28 districts of the Republic of Malawi targeting
both urban and rural populations. For the MDHS, 850 clusters with
inclusion-probability proportional to population size. National Micro-
nutrient Survey clusters (n= 105) were then randomly selected from
MDHS clusters (35 in each of the North, Central, and South regions)
with representation from urban and rural areas. In each of the selected
households, eligible participants (defined as having spent the night
prior to the survey in that household) were invited to participate from
all the demographic groups as follows: pre-school children (PSC, aged
6–59 months), school aged children (SAC, aged 6–14 years), non-
pregnant women of reproductive age group (WRA, aged 15–45 years)
and men. Urine was collected only from WRA and SAC. Urine was not
collected from PSC and men due to difficulties in getting urine and the
small sample size, respectively. Urine was collected as a casual sample
at the time of interview, or within 24 h if that was not possible. No
other information on the urine samples (e.g. flow rate, time since last
void) was collected. Exclusion criteria were applied to participants
based on the requirements of the NMS and not for the purposes of this
study. Ethical approval and a material transfer agreement was granted
by the Malawi National Health Sciences Research Committee (NHSRC),
reference number NHSRC 15/5/1436. Individual informed consent was
also secured by the NMS field team from every adult participant before
sample collection, and from caregivers before collecting from SACs.

2.2. Sample collection

At each collection site, a temporary laboratory was established to
minimize contamination and facilitate accurate record keeping for
traceability of samples. Strict quality control measures were followed
using well-trained nurses, clinicians and laboratory technicians under
the supervision of the Centers for Disease Control & Disease Prevention
(CDC), Georgia, USA. Casual urine samples were obtained in 125mL
polypropylene urine cups with screw caps (model 1131202, Heinz
Herenz Medizinalbedarf GmbH, Hamburg, Germany). In total, 1406
urine samples were collected from WRA (n= 741) and SAC (n= 665).
The samples were frozen within an hour of collection and kept at
−20 °C for maximum of 8 h before being transferred to a central la-
boratory at the Community Health Sciences Unit (CHSU) where the
samples were stored at −80 °C. Samples were labelled with barcodes to
enable tracking. Aliquots of urine were dispensed into 2 mL iodine free
cryo-vial tubes, and transferred (frozen in cool boxes at the point of
dispatch) to the UK for elemental analyses and hydration adjustment.
After analysis, remaining samples were disposed of in accordance with
the Material Transfer Agreement (MTA).
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2.3. Analysis of Se concentration in urine

Total elemental concentrations of a routine suite of approximately
30 elements were determined in thawed urine samples following a ×10
dilution in 1% v/v HNO3, 0.5% v/v HCl using an Agilent 7500cx series
inductively coupled plasma mass spectrometer (ICP-MS, Agilent
Technologies, Santa Clara, USA) under the conditions described in
Middleton et al. (2016a,b). Selenium was measured in hydrogen (H2)
reaction mode to reduce polyatomic interferences associated with 78Se,
such as 38Ar40Ar+. Internal standardization was achieved through the
simultaneous introduction of tellurium (Te) via a T-piece. The limit of
detection for Se was 0.3 µg L−1 based on 3× standard deviation of 137
analytical blanks. Certified reference materials (CRMs) were analyzed
with urine samples: NIES No. 18 Human Urine (National Institute for
Environmental Studies, Tsukuba, Japan) (total Se certified value:
59 ± 5 µg L−1; recovery: 115%; precision: 6%; n= 57) and Seronorm
Trace Elements Urine L-1 (LGC Group, Teddington, UK) (total Se cer-
tified value: 13.9 µg L−1, recovery: 98%; precision: 3%; n=20).
Plasma Se concentration data measured using ICP-MS are described in
Phiri et al. (2019).

2.4. Correction for hydration status

Correction of urine Se concentration data was undertaken using
three approaches, osmolality, specific gravity, and creatinine, to ex-
plore how these corrections affected relationships between urine and
plasma Se concentration.

Urinary osmolality (osm) was measured using an Osmomat 030
cryoscopic osmometer (Gonotec, Berlin, Germany) as described by
Middleton et al. (2016a). This method involves comparing the freezing
point of urine and that of pure water to determine osmolality expressed
in milliosmoles (mOsm) per kg of water (Levine and Fahy, 1945)

For any given sample, with measured osmolality (omeas), the mea-
sured Se concentration (Seuncor) was corrected for osmolality to give a
corrected value (Seosm) as follows:

= ×Se Se Ō
Oosm uncor

meas (1)

where Ō is the mean osmolality of all samples tested in the study,
Omeasrefers to osmolality measured.

Specific gravity (sg) was measured using a handheld temperature-
corrected refractometer (PAL-10S, Atago, Japan), on 1 to 2 drops of
urine. For any given sample, with measured specific gravity (sgMeas),
SeMean was adjusted to give a corrected value Sesg as follows:

= ×

−

−

Se Se
(sg 1)
(sg 1)sg uncor

Mean

Meas (2)

where sgMean is the mean of specific gravity of all samples tested in the
study, sgMeas refers to specific gravity measured.

Urinary creatinine (creMeas) was determined by enzymatic (creati-
nase) reaction using a Randox Rx Imola, RX series instrument (Randox
Laboratories Limited, Crumlin, Co. Antrim, UK) and the following
correction applied:

=Se Se
crecre

uncor

Meas (3)

2.5. Data analysis

The objective of the analysis was to examine the relationship be-
tween plasma Se concentration and the corresponding urine Se con-
centration data with and without corrections. The key analytical steps
are set out in detail below. In summary, we undertook exploratory
analysis to examine the data and to select any necessary transforma-
tions. We then used a linear mixed model (LMM), which reflects the

hierarchical sampling design (individuals selected within households
within clusters), to examine the relationship between plasma and urine
Se concentration, and the way in which the variation in plasma Se
concentration not explained by a linear function of urine Se con-
centration is distributed between the individual, household and cluster
levels of the sampling. We then estimated the cluster mean values of
plasma and urine Se concentration so that the relationship between
these variables could be visualized at this generalized, population scale.
We used ordinary kriging (OK) to map plasma and urine Se con-
centrations so that these could be compared visually. Data for SAC were
not gender disaggregated.

2.6. Exploratory analyses

Corrections of urine Se concentration were performed to minimize
effects of hydration-driven dilution variation of samples among the
study population. Both Seuncor and corrected urine Se concentration
(Seosm, Sesg, Secre) was compared to plasma Se concentration the com-
monly-used biomarker for Se status.

The objective of the exploratory analyses was to make an initial
assessment of the appropriate scale at which to compare plasma and
urine Se concentrations. Inspection of scatter diagrams, and the output
of ordinary least squares regressions of plasma Se and urine Se con-
centrations, corrected and uncorrected, indicated that both variables
were best analyzed on natural log (loge) scales to make the assumption
of linear effects and normally distributed residuals plausible. Ordinary
least-squares estimates from these data are suitable only for exploratory
purposes because they do not reflect the dependencies among the ob-
servations that arise from the sampling design. We also computed the
mean value of the residuals from the exploratory models for each
cluster and examined the empirical variogram of these values to explore
evidence for spatial dependence of the variation of the between-cluster
random effect. It is noteworthy that this exploratory empirical vario-
gram is expected to underestimate the variation of the between-cluster
random effect. However, this provided initial evidence of spatial de-
pendence of the residuals.

2.7. Linear mixed model (LMM)

For the final analysis we used a LMM, which took the form:

= + + +ηy Xτ Z Z α εC H (4)

where y is a vector of n observations of loge-transformed plasma Se
concentration, X is a design matrix with n rows and a column of 1 s (i.e.
the value 1 in each cell of that column of the matrix) as it corresponds
to a constant fixed effect, either the overall mean (for the null model) or
the intercept of the regression on urine Se concentration. For models
where urine Se concentration was included in the fixed effects the va-
lues of loge-transformed urine Se concentration were included in a
second column of X. The term τ is a vector containing the fixed effects
parameters, respectively an intercept and a regression coefficient for
the urine Se concentration. The term η is a random component, with a
random value for the mean difference between the fitted and observed
transformed plasma Se concentration under the model in each cluster of
the original sample design. Each entry in this random vector is asso-
ciated with the corresponding observation by the design matrix ZC
which indicates the cluster to which each observation belongs.
Similarly, the term α is a random effect which represents the deviation
between the mean error of the fixed model within each household and
the mean for the cluster to which that household belongs. The term ZH
is the design matrix which associates each observation with its corre-
sponding household. Finally, ε is a random effect, the random deviation
of the observation for each individual from its corresponding household
mean.

In the LMM, Eq. (4), the two random effects, ε and α, are in-
dependent Gaussian random variables, each identically and

F.P. Phiri, et al. Environment International 134 (2020) 105218

3



independently distributed with mean zero. The variances of these
random effects are of interest, namely the variance of ε (the between-
individual within household variance) and the variance of α (the be-
tween-household within cluster variance). The random effect η, the
between-cluster random component, is modelled as a spatially-corre-
lated random variable so the observations have a zero mean and a
covariance matrix which takes the form:

= σV R,C
2 (5)

where σC2 is the between-cluster variance and the correlation matrix R
has entries

= −ρ κ ϕR x x[i, j] (| |; , ),i j (6)

where |xi − xj| denotes the distance in space between the locations, xi
and xj, of the ith and jth cluster respectively and ρ(u; κ, ϕ) is a Matérn
correlation function (Matérn, 1986) where u is the lag distance between
two locations in space and κ and ϕ are parameters which determine,
respectively, the spatial smoothness of the variation of η over short
distances and the rate at which the autocorrelation of the variable de-
cays with distance in space.

Stein (1999) provides details of the Matérn correlation function.
Briefly, the parameter κ controls the smoothness of the spatial random
variable whereas ϕ controls, with κ, the spatial scale over which the
variable shows spatial dependence (Stein, 1999). The larger the value of
κ the smoother is the spatial variation of the random variable. The
overall LMM therefore has five parameters for the random variation,
the two parameters of the Matérn correlation function and the var-
iances of the three random effects. These were estimated by residual
maximum likelihood (REML) (Diggle and Ribeiro, 2007) using code
written for the R platform (R Core Team, 2017). The use of REML
minimizes the effects of uncertainty in the fixed effects parameters (in
τ) on the variance parameter estimates. Once the variance parameters
are estimated, they can be used to estimate the fixed effects parameters
by weighted least squares (Lark and Cullis, 2004). One can also com-
pute the standard error of these estimates. We followed Diggle and
Ribeiro (2007) in estimating the κ parameter by a profile likelihood
approach, considering some discrete values of κ (0.1, 0.5, 1 and 2),
fixing κ at each of these values in turn and finding the corresponding
REML estimates of the remaining parameters (Diggle and Ribeiro,
2007). The model for which the likelihood was largest was then se-
lected. To characterize the scale of spatial dependence of a fitted model
we computed the effective range. This is the lag distance at which the
Matérn correlation takes a small value (0.05) and can be obtained by
multiplying the parameter ϕ by a constant which depends on the value
of κ as in Table 1.

We first fitted the model specifying a constant mean as the only
fixed effect. We call this the null model. Our interest is in how including
each of the predictors (urine Se concentration) reduced the variance of
each random effect in the model, since the reduction of the random
variance of some term indicates that the predictor provides information
on the variation of plasma Se concentration observed at that level of the
sampling design (between cluster, between household within cluster, or

between individual within household). One way to quantify this is to
compute an approximate adjusted R2 statistic for each random com-
ponent of the model. For example, if σC,N2 is the estimated between-
cluster variance for the null model (fixed effect a constant mean) and
σC,U12 is the corresponding variance for the model with some corrected
or uncorrected urine Se concentration U as a predictor variable, then
the corresponding approximate adjusted R2 is:

= − σ σR 1 / .C,U
2

C,U
2

C,N
2 (7)

We call this an approximate R2 statistic because, with the variances
estimated separately by REML rather than ordinary least squares, the
values are not bounded between zero and 1. However, one can see that
if including urine Se concentration accounted for all the variation in
plasma Se between households then the expected value of σC,U2 would
be zero and RC,U

2 would equal one. Similarly, if including urine Se
concentration accounted for no variation in plasma Se concentration
between households then the expected values of σC,U2 and σC,N2 would
be equal and RC,U

2 would equal zero. To aid the interpretation of our
results we computed approximate adjusted R2 statistics for between-
individual (within household) variation, RI,U

2, for between-household
(within cluster) variation, RH,U

2, and for between-cluster variation,
Rc,U

2.

2.8. Mapping urine Se concentration versus plasma Se concentration for
WRA

Urine Se concentration as a potential biomarker for Se status for
WRA was explored through mapping, and based on comparisons with
plasma Se concentration whose mapping was described in Phiri et al.
(2019). Briefly, corrected and uncorrected urine Se concentration data
were used. An ordinary kriging (OK) estimate of individual urine Se
concentration was computed at nodes of a 500 by 500m square grid
scale by exponentiation which gives a median-unbiased central value of
the prediction distribution on the original scale (Pawlowsky-Glahn and
Olea, 2004). The prediction grid data were mapped using ArcGIS
(v10.3, ESRI, Redlands, CA, USA).

The urine Se concentration cluster means (loge scale) were esti-
mated for uncorrected data and for the three corrections (Seosm, Sesg,
Secre). This was done with a weighted least-squares estimator using the
variance components from the LLMs where each individual within a
household with two WRA gets less weighting in the cluster mean than
household with only one WRA. The cluster means for urine Se con-
centration were then plotted against the corresponding values for
plasma Se concentration.

3. Results

3.1. Urine selenium concentration

The mean and median Seuncor for WRA were 25.7 µg L−1 and 16.2
µg L−1, respectively (standard deviation, SD ± 34.7 µg L−1; range 0.8
to 398 µg L−1; Table 2). The mean and median Seuncor for SAC were
27.1 µg L−1 and 15.0 µg L−1, respectively (SD ± 45.1 µg L−1; range
0.8 to 562.8 µg L−1). For WRA, the mean corrected urine Se con-
centrations (Seosm, Sesg, Secre) were smaller than Seuncor (Table 2). For
SAC, the mean Seuncor concentration was larger than the corrected va-
lues for Seosm and Sesg except Secre (Table 2); this might arise as a
consequence of protein energy malnutrition (PEM) being more pre-
valent among SAC. All Seuncor data were above the detection limit of
0.3 µg L−1.

3.2. Spatial comparison of urine and plasma Se concentrations

Table 3 shows the components of variance of plasma Se con-
centration (loge scale) for WRA in a model for variation about the

Table 1
Effective range expressed as a multiple of the
ϕ parameter for different values of the κ

parameter of the Matérn correlation function.

κ Effective range

0.1 1.4× ϕ

0.5 3× ϕ

1.0 4× ϕ

2.0 5.5× ϕ

The κ and ϕ correlation parameters are de-
scribed in the text following their appearance
in Eq. (6).
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overall mean value of the population. These results show that the lar-
gest component of variance is at the between-cluster level. The variance
at between-household, within-cluster, level is an order of magnitude
smaller, and is somewhat smaller than the variance between individuals
within households. For SAC (Table 3) the between and within-house-
hold variance components are also an order of magnitude smaller than
the between-cluster variance, but the between-household variance is
the larger of the two.

Table 3 also shows the corresponding variance components for
plasma Se concentration when Seosm, Sesg, Secre is included as a pre-
dictor. In so far as urine Se concentration succeeds as a predictor of
variation of plasma Se concentration at each level of the sampling, the
corresponding variance component will be reduced relative to its value
in the “null” model (with no predictor) on the top row. The approx-
imate adjusted R2 values shown in the table show the reduction in each
variance component as a proportion of the value in the null model and
therefore measure the extent to which a particular predictor succeeds in
accounting for variation in plasma Se concentration at the corre-
sponding level.

It is notable that the corrected urine Se concentration values have
markedly larger adjusted R2 than does the Seuncor urine Se concentra-
tion at the between-cluster and between-household level for both WRA
and SAC. This shows the success of the corrections in reducing the
variations in urinary Se concentrations that are likely to be attributable

to variations in hydration status. It emphasizes that a suitable correc-
tion to concentrations in casual urine data is needed if these are to be
used as a biomarker. We see that the R2 are larger for Secre and Sesg
(approximately 0.6) for WRA at cluster level than for Seosm. This is also
the case at household level (approximate R2 of 0.44 and 0.50 Secre and
Sesg, respectively).

The approximate R2 values are smaller for SAC than for WRA
(Table 3), showing that casual urinary Se is less useful as a biomarker
for this demographic group. A further notable difference between the
results for WRA and SAC is that the effective range (the largest distance
over which there is spatial dependence) of the between-cluster varia-
tion is markedly reduced by including urine Se concentration as a
predictor for WRA but not for SAC. The effective range of urine Se
concentration at cluster level for WRA was 38–49 km, depending on
the correction, compared to 118 km for the null model (Table 3). For
SAC, the effective range was 64–87 km compared to 74 km for the null
model (Table 3). These results indicate that whilst much of the long
range spatially correlated variation in plasma Se concentration is pre-
dicted by urine Se concentration in WRA, and that this is relatively
insensitive to correction factors, in SAC, less of long range spatially
correlated variation in plasma Se concentration is predicted by urine Se
concentration and it is more dependent on the correction factor.

Table 3 also gives the estimated intercept and slope for the linear
function that predicts plasma Se concentration from urine Se con-
centration, with the associated standard errors. For both WRA and SAC,
the slopes for corrected urine Se concentration are an order of magni-
tude larger than their standard errors, showing strong evidence for the
linear relationship. The difference is smaller in both cases for Seuncor,
although still large enough to support the linear model. Thus, urine Se
concentration is a significant predictor of Se status at a population level.

3.3. Cluster mean correlation between urine Se concentration and plasma
Se concentration

There are correlations between urine Se concentration and plasma
Se concentration at between-household and between-cluster levels
(Table 3). One way to visualize these relationships is to plot the esti-
mated mean urine and plasma Se concentrations of the different clus-
ters (Fig. 1). For WRA, the relationship between cluster mean Seosm,
Sesg or Secre and plasma Se concentration is stronger than for Seuncor, as
indicated by the approximate R2 values (Table 3). A similar pattern was
observed in SAC, where there is a stronger correlation between Sesg and

Table 2
Urine Se concentration (all units are µg mL−1, except creatinine, µg Se g
creatinine−1) for WRA and SAC.

Characteristics Urinary dilution
correction

Mean Median SD Min Max

WRA (n= 741) Uncorrected 25.7 16.2 34.7 0.8 398
Osmolarity 23.6 16.0 29.6 2.0 339
Specific gravity 22.8 16.3 25.9 2.0 281
Creatinine 20.4 14.3 25.7 3.3 300

SAC (n= 665) Uncorrected 27.1 15.0 45.1 0.8 563
Osmolarity 26.0 17.1 37.3 1.6 473
Specific gravity 25.1 16.9 35.0 2.6 414
Creatinine 31.9 20.9 52.7 4.3 651

n= sample number in the demographic group; SD= standard deviation;
min=minimum value; max=maximum value, WRA=Women of re-
productive age (aged 15–49 years); SAC=School aged children (aged
6–14 years).

Table 3
Variance parameters for random effects for plasma selenium concentration in WRA (aged 15–49 years) and SAC (aged 6–14 years) in Malawi.

Predictor of
plasma Se
concentration

κ Variance:
between-
individuals within
households

Variance:
between-
households
within clusters

Variance:
between
clusters

RI,U
2 RH,U

2 RC,U
2 ϕ for

between-
cluster
random
effects

Effective
range

Intercept: WLS
estimate and
standard error

Slope: WLS estimate

WRA
Null model 0.5 0.03 0.02 0.15 39.4 118
Urine-Osm 2 0.03 0.01 0.07 −0.11 0.39 0.52 7.22 39.7 3.85 0.06 0.17 0.02
Urine-SG 2 0.03 0.01 0.06 −0.11 0.50 0.59 6.97 38.3 3.71 0.06 0.22 0.02
Urine-Cre 1 0.03 0.01 0.06 −0.04 0.44 0.61 12.3 49.4 3.61 0.07 0.27 0.02
Urine-Unc 2 0.03 0.01 0.11 −0.11 0.22 0.29 8.28 45.5 4.16 0.06 0.07 0.01

SAC
Null model 0.5 0.02 0.04 0.16 24.7 74.1
Urine-Osm 0.5 0.02 0.03 0.09 −0.05 0.24 0.39 21.9 65.6 3.78 0.07 0.15 0.02
Urine-SG 0.5 0.02 0.03 0.08 −0.11 0.32 0.51 21.5 64.5 3.61 0.07 0.20 0.017
Urine-Cre 0.5 0.02 0.03 0.09 −0.16 0.32 0.43 28.9 86.7 3.55 0.09 0.21 0.021
Urine-Unc 0.5 0.02 0.03 0.12 −0.05 0.08 0.19 23.7 70.7 4.06 0.07 0.06 0.01

Approximate adjusted R2 values (Equation [4]) are based on nested variance components: RI,U
2= variation between-individuals within household; RH,U

2= variation
between-households within clusters; Rc,U

2= variation between-clusters. GLS: weighted least squares estimates. The Matérn correlation parameters κ and ϕ are
described in the text where they appear in Eq. (6). Note, if κ is larger, the random variation is spatially smoother than for a smaller κ. The κ parameters in Table 3 were
selected on the basis of their maximum profile likelihood, following the procedure described by Diggle and Ribeiro (2007). The κ parameters selected indicate that the
random variation in urine Se concentration is spatially smoother in WRA than in SAC.
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plasma Se concentration than for Seosm, Secre and Seuncor (Table 3).

3.4. Mapping of casual urine Se concentration versus plasma Se
concentration for WRA

The median-unbiased back transformed values of the OK predictions
of urine Se concentration (WRA, all corrections) are presented as maps,
along with the corresponding map of plasma Se concentration reported
by Phiri et al. (2019), (Fig. 2). These show the spatial pattern of the

predicted concentrations of the different biomarker at national scale.
The broad spatial pattern of Se concentration in urine and in blood
plasma (Phiri et al., 2019) are similar. Concentrations of Se in both
urine and plasma are greatest in the southern part of Malawi along the
Shire River, and in areas closer to Lake Malawi (Fig. 2). However, not
all the variations seen in plasma Se concentration are reflected in the
urinary measurements. This may reflect the observation that the spa-
tially correlated random variation remains substantial in the mixed
models for plasma Se concentration with urine Se concentration as a

Fig. 1. Estimated cluster mean concentrations of plasma selenium concentration and (a) SeUncor, (b) SeOsm, (c) SeSG and (d) SeCre for women of reproductive age
(WRA) and school-aged children (SAC). Note that these are unbiased back-transformations of the estimates on the loge scale.
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fixed effect.

4. Discussion

Urine Se concentration predicted some of the variation seen in
blood plasma Se concentration at broad regional scales (i.e. between
clusters). This shows that at population level, urine Se concentration
could be used as a biomarker for assessing Se-status, as predicted pre-
viously from a small-scale cross-sectional study of WRA in two areas of
Malawi of contrasting dietary Se intakes due to soil type and resulting
food composition (Hurst et al., 2013).

There were no significant population-level differences in un-
corrected urine Se concentration between WRA and SAC. At a cluster-
level, correction of urine Se concentration for hydration status im-
proved the prediction of plasma Se concentration for both demographic

groups. In WRA, all corrections predicted plasma Se concentration
better than uncorrected urine Se concentration, whilst in SAC the Sesg
predicted plasma Se concentration better than Seuncor. The use of spe-
cific gravity correction has also shown to work well for other urinary
surveillance, including cadmium and steroid hormone concentrations
(Miller et al., 2004; Suwazono et al., 2005). Unexpectedly, Sesg ap-
peared to perform better than Seosm within this study. Osmolality is
typically considered a more robust measure of urinary dilution than
specific gravity. It is already known that creatinine correction should be
used with caution in settings where protein energy malnutrition (PEM)
is likely, such as in many parts of sub-Saharan Africa (Allen et al., 2006;
Bain et al., 2013; Cockell, 2015), which is further supported by the
findings for SAC in this study.

At cluster level, urine Se concentration predicted plasma Se con-
centration better in WRA than in SAC. To our knowledge, there is no

Fig. 2. Predicted Se concentration across Malawi (a), in plasma (b; adapted from Phiri et al., 2019), and urine, SeUncor, (c) SeOsm, (d) SeSG (e) and SeCre (f) for WRA.
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evidence why this is the case, however, it has previously been reported
that urinary Se retention is greater in adult males than adult females
(Combs, 2015). Thus, urine Se concentrations may be greater, and more
strongly correlated with Se intake, in female-only cohorts. Many other
factors, genetic and environmental, are likely to influence Se retention
and excretion in urine; these factors along with body size, age, and
gender will also affect the performance of urinary adjustments for hy-
dration status. Further exploration of these factors is outside the scope
of the current study.

The approximate R2 value of 0.50 for Sesg concentrations at
household level for WRA suggests that the biomarker may have some
value for indicating differences between households, but with more
uncertainty than at between-cluster scale. In contrast, the R2 values
between individuals, for both WRA and SAC, are all very small, showing
that differences between individuals in urine Se concentration have no
predictive value for showing between-individual differences in Se status
compared to plasma Se concentration. This is consistent with observa-
tions on urinary iodine data, which is widely used for population as-
sessments but is not appropriate for assessing individual-level status
(WHO, 2007). It may partially be due to the effect of intra- and inter-
individual differences in hydration, as observed in studies in multiples
biomarkers (Koch et al., 2014; Middleton et al., 2018; O’Brien et al.,
2017), which were not entirely addressed by the corrections of the raw
urine Se concentrations in the present study.

The spatial patterns in urine Se concentration for WRA, and the
effective ranges of spatial correlation of up to ~50 km, is consistent
with previous observations for plasma Se concentration in WRA in
Malawi (Phiri et al., 2019). The spatial dependency of urine Se con-
centration can be hypothesized to be influenced in the same ways as
plasma Se concentration, for example, by soil type and dietary patterns
(Chilimba et al., 2011; Hurst et al., 2013; Joy et al., 2015a,b). As seen
previously for plasma Se concentration in WRA, urine Se concentration
is much greater in clusters in the south of Malawi and near to Lake
Malawi, where vertisol soil types are more prevalent, leading to greater
grain Se concentration and dietary Se intakes. These results are there-
fore consistent with a previous small cross-sectional study in Malawi
showing associations between dietary Se intake, plasma Se concentra-
tion, and casual urine Se concentration (Hurst et al., 2013), and with
national-scale geostatistical modelling shown that Se deficiency risks in
Malawi are influenced by soil type, dietary patterns and proximity to
the lake (Phiri et al., 2019).

Taken together, the results provide evidence for the opportunity of
using casual urine as a population level biomarker of Se status in sub-
Saharan Africa. It may be most useful where nutrition surveillance
systems such as Demographic and Health Surveys and National
Micronutrient Surveys are already in place and where urine samples are
already being collected. In such contexts, the Se status of the popula-
tion, and regional spatial variations that may be important both for
understanding the causes of deficiency and for prioritizing interven-
tions, can be analyzed at marginal cost if there is access to sensitive
instrumentation and good quality control during sample collection and
reporting.

The approaches for correcting urine Se concentrations in the present
study were those routinely used in the literature. Specific gravity cor-
rection for hydration status is a relatively low-cost method for hydra-
tion corrections with a simple to operate refractometer and no on-going
consumables, capable of field or laboratory measurements. It might
therefore be considered a good first option during surveillance in si-
milar contexts. Modifications of these correction equations have been
explored recently (Middleton et al., 2016a) and have shown to be
promising to improve current practice. However, such modifications
were outside the scope of the present study, and further studies to assess
the use of different corrections for measuring Se status using casual
urine are recommended, especially in different geographic contexts to
those of most existing datasets, such as this study population represents.

In cases where micronutrient surveillance collects blood, our study

does not provide evidence that urine Se concentration has any technical
advantages over plasma Se concentration in assessing the Se status of
the population, but it may provide a cost effective and less invasive
method for standalone studies requiring population Se-status data.

5. Conclusions

To our knowledge this the largest reported assessment of Se status
using urine Se concentration among a nationally representative groups
in a low Se-status context, and also the first study which shows evidence
of spatial variation in urine Se concentration in sub-Saharan Africa.
These results suggest that casual urine Se concentration is a viable al-
ternative biomarker to plasma Se concentration for assessing popula-
tion level Se status. Urine Se concentration can identify regional spatial
variations in Se status, which is likely to reflect differences in Se
characteristics of these food systems, e.g. driven by soil type and access
to different food groups. This evidence supports the potential to review
polices around national monitoring and surveillance systems of mi-
cronutrient deficiencies, also referred to as hidden hunger, where urine
samples are already collected for analysis of iodine.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgement

Funding for this study was provided by the University of
Nottingham (UoN) UK, the British Geological Survey (BGS) UK, and the
Royal Society-Department for International Development (DFID) UK,
under project AQ140000, “Strengthening African capacity in soil geo-
chemistry for agriculture and health”. We thank The Government of
Malawi (Ministry of Health; Ministry of Agriculture, Irrigation and
Water Development; National Statistics Office), and the Centers for
Disease Control & Prevention (CDC), notably Katie Tripp, Anne
Williams, and Carine Mapango, for enabling this work to be conducted,
together with all of the participating field teams and volunteers.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.envint.2019.105218.

References

Allen, L., World Health Organization, Food and Agriculture Organization of the United
Nations, 2006. Guidelines on Food Fortification with Micronutrients. World Health
Organization ; Food and Agriculture Organization of the United Nations, Geneva;
Rome.

Bain, L.E., Awah, P.K., Geraldine, N., Kindong, N.P., Sigal, Y., Bernard, N., Tanjeko, A.T.,
2013. Malnutrition in Sub-Saharan Africa: burden, causes and prospects. Pan Afr.
Med. J. 15, 120.

Burk, R.F., Hill, K.E., 2009. Selenoprotein P-expression, functions, and roles in mammals.
Biochim. Biophys. Acta 1790, 1441–1447.

Chilimba, A.D.C., Young, S.D., Black, C.R., Rogerson, K.B., Ander, E.L., Watts, M.J.,
Lammel, J., Broadley, M.R., 2011. Maize grain and soil surveys reveal suboptimal
dietary selenium intake is widespread in Malawi. Sci. Rep. 1, 72.

Cockell, K.A., 2015. Measuring iodine status in diverse populations. Br. J. Nutr. 114,
499–500.

Combs, G.F., 2015. Biomarkers of selenium status. Nutrients 7, 2209–2236.
Diggle, P., Ribeiro, P.J., 2007. Model-based geostatistics. Springer Series in Statistics.

Springer, New York, NY, USA.
Fairweather-Tait, S.J., Bao, Y., Broadley, M.R., Collings, R., Ford, D., Hesketh, J.E., Hurst,

R., 2011. Selenium in human health and disease. Antioxid. Redox Sign. 14,
1337–1383.

Hays, S.M., Macey, K., Nong, A., Aylward, L.L., 2014. Biomonitoring equivalents for se-
lenium. Regul. Toxicol. Pharmacol. 70, 333–339.

Hurst, R., Siyame, E.W.P., Young, S.D., Chilimba, A.D.C., Joy, E.J.M., Black, C.R., Ander,
E.L., Watts, M.J., Chilima, B., Gondwe, J., Kang’ombe, D., Stein, A.J., Fairweather-

F.P. Phiri, et al. Environment International 134 (2020) 105218

8

https://doi.org/10.1016/j.envint.2019.105218
https://doi.org/10.1016/j.envint.2019.105218
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0005
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0005
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0005
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0005
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0010
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0010
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0010
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0015
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0015
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0020
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0020
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0020
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0025
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0025
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0030
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0035
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0035
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0040
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0040
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0040
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0045
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0045
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0050
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0050


Tait, S.J., Gibson, R.S., Kalimbira, A.A., Broadley, M.R., 2013. Soil-type influences
human selenium status and underlies widespread selenium deficiency risks in
Malawi. Sci. Rep. 3, 1425.

Joy, E.J.M., Broadley, M.R., Young, S.D., Black, C.R., Chilimba, A.D.C., Ander, E.L.,
Barlow, T.S., Watts, M.J., 2015a. Soil type influences crop mineral composition in
Malawi. Sci. Total Environ. 505, 587–595.

Joy, E.J.M., Kumssa, D.B., Broadley, M.R., Watts, M.J., Young, S.D., Chilimba, A.D.C.,
Ander, E.L., 2015b. Dietary mineral supplies in Malawi: spatial and socioeconomic
assessment. BMC Nutr. 1, 42.

Koch, H.M., Aylward, L.L., Hays, S.M., Smolders, R., Moos, R.K., Cocker, J., Jones, K.,
Warren, N., Levy, L., Bevan, R., 2014. Inter- and intra-individual variation in urinary
biomarker concentrations over a 6-day sampling period. Part 2: personal care product
ingredients. Toxicol. Lett. 231, 261–269.

Lark, R.M., Cullis, B.R., 2004. Model-based analysis using REML for inference from sys-
tematically sampled data on soil. Eur. J. Soil Sci. 55, 799–813.

Levine, L., Fahy, J.P., 1945. Evaluation of urinary lead determinations. I. The significance
of the specific gravity. J. Ind. Hyg. Toxicol. 27, 217–223.

Longnecker, M.P., Stram, D.O., Taylor, P.R., Levander, O.A., Howe, M., Veillon, C.,
McAdam, P.A., Patterson, K.Y., Holden, J.M., Morris, J.S., Swanson, C.A., Willett,
W.C., 1996. Use of selenium concentration in whole blood, serum, toenails, or urine
as a surrogate measure of selenium intake. Epidemiology 7, 384–390.

Matérn, B., 1986. Spatial variation. Lecture Notes in Statistics, second ed. Springer-
Verlag, New York, NY, USA.

Middleton, D.R., Watts, M.J., Lark, R.M., Milne, C.J., Polya, D.A., 2016a. Assessing ur-
inary flow rate, creatinine, osmolality and other hydration adjustment methods for
urinary biomonitoring using NHANES arsenic, iodine, lead and cadmium data.
Environ. Health 15, 68.

Middleton, D.R.S., Watts, M.J., Hamilton, E.M., Ander, E.L., Close, R.M., Exley, K.S.,
Crabbe, H., Leonardi, G.S., Fletcher, T., Polya, D.A., 2016b. Urinary arsenic profiles
reveal exposures to inorganic arsenic from private drinking water supplies in
Cornwall, UK. Sci. Rep. 6, 25656.

Middleton, D.R.S., McCormack, V.M., Munishi, M.O., Menya, D., Marriott, A.L., Hamilton,
E.M., Mwasamwaja, A.O., Mmbaga, B.T., Samoei, D., Osano, O., Schüz, J., Watts,
M.J., 2018. Intra-household agreement of urinary elemental concentrations in
Tanzania and Kenya: potential surrogates in case–control studies. J. Expos. Sci.
Environ. Epidemiol. 29, 335–343.

Miller, R.C., Brindle, E., Holman, D.J., Shofer, J., Klein, N.A., Soules, M.R., O’Connor,
K.A., 2004. Comparison of specific gravity and creatinine for normalizing urinary
reproductive hormone concentrations. Clin. Chem. 50, 924–932.

Moriguchi, J., Ezaki, T., Tsukahara, T., Fukui, Y., Ukai, H., Okamoto, S., Shimbo, S.,
Sakurai, H., Ikeda, M., 2005. Decreases in urine specific gravity and urinary

creatinine in elderly women. Int. Arch. Occup. Environ. Health 78, 438–445.
National Statistical Office (NSO) [Malawi], Community Health Sciences Unit (CHSU)

[Malawi], Centers for Disease Control and Prevention (CDC), Emory University,
2017. Malawi Micronutrient Survey: Key Indicators Report. NSO, Zomba, Malawi
CHSU, Lilongwe, Malawi; CDC and Emory University, Atlanta, GA, USA.

National Statistical Office (NSO) [Malawi], 2017. Malawi Demographic and Health
Survey 2015–16. NSO and ICF, Zomba, Malawi, and Rockville, Maryland, USA.

Nermell, B., Lindberg, A.L., Rahman, M., Berglund, M., Persson, L.A., El Arifeen, S.,
Vahter, M., 2008. Urinary arsenic concentration adjustment factors and malnutrition.
Environ. Res. 106, 212–218.

O’Brien, K.M., Upson, K., Buckley, J.P., 2017. Lipid and creatinine adjustment to evaluate
health effects of environmental exposures. Curr. Environ. Health Rep. 4, 44–50.

Pawlowsky-Glahn, V., Olea, R.A., 2004. Geostatistical analysis of compositional data.
Studies in Mathematical Geology. Oxford University Press, New York, NY, USA.

Phiri, F.P., Ander, L.E., Bailey, E.H., Chilima, B., Chilimba, A.D.C., Gondwe, J., Joy,
E.J.M., Kalimbira, A.A., Kumssa, D.B., Lark, R.M., Phuka, J.C., Salter, A., Suchdev,
P.S., Watts, M.J., Young, S.D., Broadley, M.R., 2019. The risk of selenium deficiency
in Malawi is large and varies over multiple spatial scales. Sci. Rep. 9, 6566.

R Core Team, 2017. A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Stein, M.L., 1999. Interpolation of spatial data: some theory for kriging. Springer Series in
Statistics. Springer-Verlag, New York, NY, USA.

Suwazono, Y., Akesson, A., Alfvén, T., Järup, L., Vahter, M., 2005. Creatinine versus
specific gravity-adjusted urinary cadmium concentrations. Biomarkers 10, 117–126.

Thomson, C.D., 2004. Selenium and iodine intakes and status in New Zealand and
Australia. Br. J. Nutr. 91, 661–672.

Watts, M.J., Middleton, D.R.S., Marriott, A., Humphrey, O.S., Hamilton, E., McCormack,
V., Menya, D., Farebrother, J., Osano, O., 2019. Iodine status in western Kenya: a
community-based cross-sectional survey of urinary and drinking water iodine con-
centrations. Environ. Geochem. Health. https://doi.org/10.1007/s10653-019-
00352-0.

WHO, 2007. Assessment of Iodine Deficiency Disorders and Monitoring their Elimination:
A Guide for Programme Managers, third ed. World Health Organization, Geneva,
Switzerland.

Yang, G., Zhou, R., Yin, S., Gu, L., Yan, B., Liu, Y., Liu, Y., Li, X., 1989. Studies of safe
maximal daily dietary selenium intake in a seleniferous area in China. I. Selenium
intake and tissue selenium levels of the inhabitants. J. Trace Elem. Electrol. Health
Dis. 3, 77–87.

Yeh, H.C., Lin, Y.S., Kuo, C.C., Weidemann, D., Weaver, V., Fadrowski, J., Neu, A., Navas-
Acien, A., 2015. Urine osmolality in the US population: implications for environ-
mental biomonitoring. Environ. Res. 136, 482–490.

F.P. Phiri, et al. Environment International 134 (2020) 105218

9

http://refhub.elsevier.com/S0160-4120(19)32326-8/h0050
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0050
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0050
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0055
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0055
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0055
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0060
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0060
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0060
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0065
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0065
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0065
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0065
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0070
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0070
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0075
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0075
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0080
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0080
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0080
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0080
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0085
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0085
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0090
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0090
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0090
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0090
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0095
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0095
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0095
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0095
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0100
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0100
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0100
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0100
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0100
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0105
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0105
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0105
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0110
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0110
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0110
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0115
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0115
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0115
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0115
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0120
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0120
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0125
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0125
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0125
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0130
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0130
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0135
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0135
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0140
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0140
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0140
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0140
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0145
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0145
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0150
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0150
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0155
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0155
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0160
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0160
https://doi.org/10.1007/s10653-019-00352-0
https://doi.org/10.1007/s10653-019-00352-0
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0170
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0170
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0170
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0175
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0175
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0175
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0175
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0180
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0180
http://refhub.elsevier.com/S0160-4120(19)32326-8/h0180

	Urine selenium concentration is a useful biomarker for assessing population level selenium status
	Introduction
	Methods
	Sampling
	Sample collection
	Analysis of Se concentration in urine
	Correction for hydration status
	Data analysis
	Exploratory analyses
	Linear mixed model (LMM)
	Mapping urine Se concentration versus plasma Se concentration for WRA

	Results
	Urine selenium concentration
	Spatial comparison of urine and plasma Se concentrations
	Cluster mean correlation between urine Se concentration and plasma Se concentration
	Mapping of casual urine Se concentration versus plasma Se concentration for WRA

	Discussion
	Conclusions
	mk:H1_18
	Acknowledgement
	Supplementary material
	References




