135 research outputs found

    Mapping the Recent Star Formation History of the Disk of M51

    Full text link
    Using data acquired as part of a unique Hubble Heritage imaging program of broadband colors of the interacting spiral system M51/NGC 5195, we have conducted a photometric study of the stellar associations across the entire disk of the galaxy in order to assess trends in size, luminosity, and local environment associated with recent star formation activity in the system. Starting with a sample of over 900 potential associations, we have produced color-magnitude and color-color diagrams for the 120 associations that were deemed to be single-aged. It has been found that main sequence turnoffs are not evident for the vast majority of the stellar associations in our set, potentially due to the overlap of isochronal tracks at the high mass end of the main sequence, and the limited depth of our images at the distance of M51. In order to obtain ages for more of our sample, we produced model spectral energy distributions (SEDs) to fit to the data from the GALEXEV simple stellar population (SSP) models of Bruzual and Charlot (2003). These SEDs can be used to determine age, size, mass, metallicity, and dust content of each association via a simple chi-squared minimization to each association's B, V, and I-band fluxes. The derived association properties are mapped as a function of location, and recent trends in star formation history of the galaxy are explored in light of these results. This work is the first phase in a program that will compare these stellar systems with their environments using ultraviolet data from GALEX and infrared data from Spitzer, and ultimately we plan to apply the same stellar population mapping methodology to other nearby face-on spiral galaxies.Comment: 13 pages, 3 figures, 1 table. Accepted to The Astronomical Journa

    Absolute Magnitudes and Colors of RR Lyrae stars in DECam Passbands from Photometry of the Globular Cluster M5

    Full text link
    We characterize the absolute magnitudes and colors of RR Lyrae stars in the globular cluster M5 in the ugriz filter system of the Dark Energy Camera (DECam). We provide empirical Period-Luminosity (P-L) relationships in all 5 bands based on 47 RR Lyrae stars of the type ab and 14 stars of the type c. The P-L relationships were found to be better constrained for the fundamental mode RR Lyrae stars in the riz passbands, with dispersion of 0.03, 0.02 and 0.02 magnitudes, respectively. The dispersion of the color at minimum light was found to be small, supporting the use of this parameter as a means to obtain accurate interstellar extinctions along the line of sight up to the distance of the RR Lyrae star. We found a trend of color at minimum light with pulsational period that, if taken into account, brings the dispersion in color at minimum light to < 0.016 magnitudes for the (r-i), (i-z), and (r-z) colors. These calibrations will be very useful for using RR Lyrae stars from DECam observations as both standard candles for distance determinations and color standards for reddening measurements.Comment: Accepted for publication in A

    Age and Mass for 920 LMC Clusters Derived from 100 Million Monte Carlo Simulations

    Full text link
    We present new age and mass estimates for 920 stellar clusters in the Large Magellanic Cloud (LMC) based on previously published broad-band photometry and the stellar cluster analysis package, MASSCLEANage. Expressed in the generic fitting formula, d^{2}N/dM dt ~ M^{\alpha} t^{\beta}, the distribution of observed clusters is described by \alpha = -1.5 to -1.6 and \beta = -2.1 to -2.2. For 288 of these clusters, ages have recently been determined based on stellar photometric color-magnitude diagrams, allowing us to gauge the confidence of our ages. The results look very promising, opening up the possibility that this sample of 920 clusters, with reliable and consistent age, mass and photometric measures, might be used to constrain important characteristics about the stellar cluster population in the LMC. We also investigate a traditional age determination method that uses a \chi^2 minimization routine to fit observed cluster colors to standard infinite mass limit simple stellar population models. This reveals serious defects in the derived cluster age distribution using this method. The traditional \chi^2 minimization method, due to the variation of U,B,V,R colors, will always produce an overdensity of younger and older clusters, with an underdensity of clusters in the log(age/yr)=[7.0,7.5] range. Finally, we present a unique simulation aimed at illustrating and constraining the fading limit in observed cluster distributions that includes the complex effects of stochastic variations in the observed properties of stellar clusters.Comment: Accepted for publication in The Astrophysical Journal, 37 pages, 18 figure

    How do parents of preverbal children with acute otitis media determine how much ear pain their child is having?

    Get PDF
    The objective of this study was to determine how parents of preverbal children determine whether their child is having otalgia. We constructed 8 cases describing a 1-year-old child with acute otitis media (AOM) using various combinations of the following 6 observable symptoms: fussiness, ear tugging, eating less, fever, sleeping difficulty, and playing less. Parents of children with a history of AOM presenting for well or sick appointments to an ambulatory clinic were asked to assign a pain level to each case on a visual analog scale. Sixty-nine parents participated in the study. Each of the 6 behaviors was associated with increased pain levels (P < .0001). Ear tugging and fussiness had the highest impact on the assigned pain levels. Higher level of parental education and private insurance were associated with higher reported pain levels (P = .007 and P = .001, respectively). Because interpretation of symptoms appears to be influenced by socioeconomic status, we question the utility of using an overall pain score from a 1-item parent scale as an outcome measure in clinical trials that include preverbal children. Perspective: Parents of preverbal children with acute otitis media use observable behaviors to determine their child's pain level. Interpretation of symptoms, however, appears to be influenced by socioeconomic status. Thus, we question the utility of using a 1-item parental pain scale in clinical trials that include preverbal children. © 2010 by the American Pain Society

    Variable stars in the field of the Hydra II ultra-faint dwarf galaxy

    Get PDF
    We report the discovery of one RR Lyrae star in the ultra--faint satellite galaxy Hydra II based on time series photometry in the g, r and i bands obtained with the Dark Energy Camera at Cerro Tololo Interamerican Observatory, Chile. The RR Lyrae star has a mean magnitude of i=21.30±0.04i = 21.30\pm 0.04 which translates to a heliocentric distance of 151±8151\pm 8 kpc for Hydra II; this value is ∼13%\sim 13\% larger than the estimate from the discovery paper based on the average magnitude of several blue horizontal branch star candidates. The new distance implies a slightly larger half-light radius of 76−10+1276^{+12}_{-10} pc and a brighter absolute magnitude of MV=−5.1±0.3M_V = -5.1 \pm 0.3, which keeps this object within the realm of the dwarf galaxies. The pulsational properties of the RR Lyrae star (P=0.645P=0.645 d, Δg=0.68\Delta g = 0.68 mag) suggest Hydra II may be a member of the intermediate Oosterhoff or Oosterhoff II group. A comparison with other RR Lyrae stars in ultra--faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid). However, given their magnitudes and large angular separation from Hydra II, they must be field stars not related to Hydra II.Comment: Revised version after comments from the referee. Accepted for publication in A

    HII Region Luminosity Function of the Interacting Galaxy M51

    Full text link
    We present a study of HII regions in M51 using the Hubble Space Telescope ACS images taken as part of the Hubble Heritage Program. We have catalogued about 19,600 HII regions in M51 with Ha luminosity in the range of L = 10^{35.5} erg/s to 10^{39.0} erg/s. The Ha luminosity function of HII regions (HII LF) in M51 is well represented by a double power law with its index alpha=-2.25\pm0.02 for the bright part and alpha=-1.42\pm0.01 for the faint part, separated at a break point L= 10^{37.1} erg/s. This break was not found in previous studies of M51 HII regions. Comparison with simulated HII LFs suggests that this break is caused by the transition of HII region ionizing sources, from low mass clusters (with ~ 10^3 M_sun, including several OB stars) to more massive clusters (including several tens of OB stars). The HII LFs with L < 10^{37.1} erg/s are found to have different slopes for different parts in M51: the HII LF for the interarm region is steeper than those for the arm and the nuclear regions. This observed difference in HII LFs can be explained by evolutionary effects that HII regions in the interarm region are relatively older than those in the other parts of M51.Comment: 36 pages, 12 figures, 2 tables, accepted to Ap

    Hubble Space Telescope Pixel Analysis of the Interacting Face-on Spiral Galaxy NGC 5194 (M51A)

    Full text link
    A pixel analysis is carried out on the interacting face-on spiral galaxy NGC 5194 (M51A), using the HST/ACS images in the F435W, F555W and F814W (BVI) bands. After 4x4 binning of the HST/ACS images to secure a sufficient signal-to-noise ratio for each pixel, we derive several quantities describing the pixel color-magnitude diagram (pCMD) of NGC 5194: blue/red color cut, red pixel sequence parameters, blue pixel sequence parameters and blue-to-red pixel ratio. The red sequence pixels are mostly older than 1 Gyr, while the blue sequence pixels are mostly younger than 1 Gyr, in their luminosity-weighted mean stellar ages. The color variation in the red pixel sequence from V = 20 mag arcsec^(-2) to V = 17 mag arcsec^(-2) corresponds to a metallicity variation of \Delta[Fe/H] ~ 2 or an optical depth variation of \Delta\tau_V ~ 4 by dust, but the actual sequence is thought to originate from the combination of those two effects. At V < 20 mag arcsec^(-2), the color variation in the blue pixel sequence corresponds to an age variation from 5 Myr to 300 Myr under the assumption of solar metallicity and \tau_V = 1. To investigate the spatial distributions of stellar populations, we divide pixel stellar populations using the pixel color-color diagram and population synthesis models. As a result, we find that the pixel population distributions across the spiral arms agree with a compressing process by spiral density waves: dense dust \rightarrow newly-formed stars. The tidal interaction between NGC 5194 and NGC 5195 appears to enhance the star formation at the tidal bridge connecting the two galaxies. We find that the pixels corresponding to the central active galactic nucleus (AGN) area of NGC 5194 show a tight sequence at the bright-end of the pCMD, which are in the region of R ~ 100 pc and may be a photometric indicator of AGN properties.Comment: 27 pages, 20 figures, accepted for publication in Ap

    The Luminosity, Mass, and Age Distributions of Compact Star Clusters in M83 Based on HST/WFC3 Observations

    Full text link
    The newly installed Wide Field Camera 3 (WFC3) on the Hubble Space Telescope has been used to obtain multi-band images of the nearby spiral galaxy M83. These new observations are the deepest and highest resolution images ever taken of a grand-design spiral, particularly in the near ultraviolet, and allow us to better differentiate compact star clusters from individual stars and to measure the luminosities of even faint clusters in the U band. We find that the luminosity function for clusters outside of the very crowded starburst nucleus can be approximated by a power law, dN/dL \propto L^{alpha}, with alpha = -2.04 +/- 0.08, down to M_V ~ -5.5. We test the sensitivity of the luminosity function to different selection techniques, filters, binning, and aperture correction determinations, and find that none of these contribute significantly to uncertainties in alpha. We estimate ages and masses for the clusters by comparing their measured UBVI,Halpha colors with predictions from single stellar population models. The age distribution of the clusters can be approximated by a power-law, dN/dt propto t^{gamma}, with gamma=-0.9 +/- 0.2, for M > few x 10^3 Msun and t < 4x10^8 yr. This indicates that clusters are disrupted quickly, with ~80-90% disrupted each decade in age over this time. The mass function of clusters over the same M-t range is a power law, dN/dM propto M^{beta}, with beta=-1.94 +/- 0.16, and does not have bends or show curvature at either high or low masses. Therefore, we do not find evidence for a physical upper mass limit, M_C, or for the earlier disruption of lower mass clusters when compared with higher mass clusters, i.e. mass-dependent disruption. We briefly discuss these implications for the formation and disruption of the clusters.Comment: 36 pages, 13 figures, 1 table; accepted for publication in the Astrophysical Journa

    Age distributions of star clusters in spiral and barred galaxies as a test for theories of spiral structure

    Full text link
    We consider models of gas flow in spiral galaxies in which the spiral structure has been excited by various possible mechanisms: a global steady density wave, self-gravity of the stellar disc and an external tidal interaction, as well as the case of a galaxy with a central rotating bar. In each model we estimate in a simple manner the likely current positions of star clusters of a variety of ages, ranging from ~ 2 Myr to around 130 Myr, depending on the model. We find that the spatial distribution of cluster of different ages varies markedly depending on the model, and propose that observations of the locations of age-dated stellar clusters is a possible discriminant between excitation mechanisms for spiral structure in an individual galaxy.Comment: 10 pages, 4 figures, accepted for publication in MNRA
    • …
    corecore