14 research outputs found

    Genetic Diversity of Serine Protease Inhibitors in Myxozoan (Cnidaria, Myxozoa) Fish Parasites

    Get PDF
    We studied the genetic variability of serine protease inhibitors (serpins) of Myxozoa, microscopic endoparasites of fish. Myxozoans affect the health of both farmed and wild fish populations, causing diseases and mortalities. Despite their global impact, no effective protection exists against these parasites. Serpins were reported as important factors for host invasion and immune evasion, and as promising targets for the development of antiparasitic therapies. For the first time, we identified and aligned serpin sequences from high throughput sequencing datasets of ten myxozoan species, and analyzed 146 serpins from this parasite group together with those of other taxa phylogenetically, to explore their relationship and origins. High intra- and interspecific variability was detected among the examined serpins. The average sequence identity was 25-30% only. The conserved domains (i.e. motif and signature) showed taxon-level differences. Serpins clustered according to taxonomy rather than to serpin types, and myxozoan serpins seemed to be highly divergent from that of other taxa. None of them clustered with their closest relative free-living cnidarians. The genetic distinction of myxozoan serpins further strengthens the idea of an independent origin of Myxozoa, and may indicate novel protein functions potentially related to parasitism in this animal group

    A Simple Method for Sample Preparation to Facilitate Efficient Whole-Genome Sequencing of African Swine Fever Virus

    Get PDF
    In the recent years, African swine fever has become the biggest animal health threat to the swine industry. To facilitate quick genetic analysis of its causative agent, the African swine fever virus (ASFV), we developed a simple and efficient method for next generation sequencing of the viral DNA. Execution of the protocol does not demand complicated virus purification steps, enrichment of the virus by ultracentrifugation or of the viral DNA by ASFV-specific PCRs, and minimizes the use of Sanger sequencing. Efficient DNA-se treatment, monitoring of sample preparation by qPCR, and whole genome amplification are the key elements of the method. Through detailed description of sequencing of the first Hungarian ASFV isolate (ASFV_HU_2018), we specify the sensitive steps and supply key reference numbers to assist reproducibility and to facilitate the successful use of the method for other ASFV researchers

    Human AdV-20-42-42, a promising novel adenoviral vector for gene therapy and vaccine product development

    Get PDF
    Preexisting immune responses toward adenoviral vectors limit the use of a vector based on particular serotypes and its clinical applicability for gene therapy and/or vaccination. Therefore, there is a significant interest in vectorizing novel adenoviral types that have low seroprevalence in the human population. Here, we describe the discovery and vectorization of a chimeric human adenovirus, which we call HAdV-20-42-42. Full-genome sequencing revealed that this virus is closely related to human serotype 42, except for the penton base, which is derived from serotype 20. The HAdV-20-42-42 vector could be propagated stably to high titers on existing E1-complementing packaging cell lines. Receptor-binding studies revealed that the vector utilized both CAR and CD46 as receptors for cell entry. Furthermore, the HAdV-20-42-42 vector was potent in transducing human and murine cardiovascular cells and tissues, irrespective of the presence of blood coagulation factor X. In vivo characterizations demonstrate that when delivered intravenously (i.v.) in mice, HAdV-20-42-42 mainly targeted the lungs, liver, and spleen and triggered robust inflammatory immune responses. Finally, we demonstrate that potent T-cell responses against vector-delivered antigens could be induced upon intramuscular vaccination in mice. In summary, from the data obtained we conclude that HAdV-20-42-42 provides a valuable addition to the portfolio of adenoviral vectors available to develop efficacious products in the fields of gene therapy and vaccination

    Development of novel adenoviral vectors to overcome challenges observed with HAdV-5 based constructs

    Get PDF
    Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in pre-clinical models and clinical trials over the last two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread pre-existing immunity have been shown to significantly impede the effectiveness of HAdV-5 mediated gene transfer. It is therefore that the in depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes

    Development of novel adenoviral vectors to overcome challenges observed with HAdV-5-based constructs

    Get PDF
    Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in pre-clinical models and clinical trials over the last two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread pre-existing immunity have been shown to significantly impede the effectiveness of HAdV-5 mediated gene transfer. It is therefore that the in depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes

    Phylogenetic analysis of all available monkeypox virus strains shows the close relatedness of contemporary ones

    No full text
    The present research aimed to evaluate the diversity of all monkeypox virus strains with a special focus on recently isolated ones by a comprehensive phylogenetic analysis of all available sequences, based on the concatenate of four viral genes. Almost all current strains from 2022 showed a high level of similarity to each other on the analyzed stretches: 218 strains shared identical sequence. Among all analyzed strains, the highest number of differences was counted compared to a RefSeq strain (Zaire-96-I-16) on the whole concatenate. Our analysis supported the distinction between Clade I (formerly Congo Basin clade), IIa and IIb (together formerly West African clade) strains and classified all 2022 strains in the last one. The high number of differences and long branch observable concerning strain Zaire-96-I-16 is most probably caused by a sequencing error. As this strain represents one of the two available reference sequences in GenBank, it is recommendable to confirm or exclude the concerning mutation. The developed method, based on four gene sequences, reflected the established whole-genome-based intraspecies classification. Although this method provides significantly less information about the strains compared to whole genome analyses, since its resolution is much lower, it still enables the rapid subspecies classification of the strains into the established clades. The genes in the analyzed concatenate are so conserved that further differentiation of contemporary strains is impossible; these strains are identical in the analyzed sections. On the other hand, since whole genome analyses are compute-intensive, the described method offers a simpler and more accessible alternative for monitoring and preliminary typing of newly sequenced monkeypox virus strains

    Complete genome sequences of pigeon adenovirus 1 and duck adenovirus 2 extend the number of species within the genus Aviadenovirus

    Get PDF
    AbstractComplete genomes of the first isolates of pigeon adenovirus 1 (PiAdV-1) and Muscovy duck adenovirus (duck adenovirus 2, DAdV-2) were sequenced. The PiAdV-1 genome is 45,480bp long, and has a gene organization most similar to turkey adenovirus 1. Near the left end of the genome, it lacks ORF0, ORF1A, ORF1B and ORF1C, and possesses ORF52, whereas six novel genes were found near the right end. The DAdV-2 genome is 43,734bp long, and has a gene organization similar to that of goose adenovirus 4 (GoAdV-4). It lacks ORF51, ORF1C and ORF54, and possesses ORF55A and five other novel genes. PiAdV-1 and DAdV-2 genomes contain two and one fiber genes, respectively. Genome organization, G+C content, molecular phylogeny and host type confirm the need to establish two novel species (Pigeon aviadenovirus A and Duck aviadenovirus B) within the genus Aviadenovirus. Phylogenetic data show that DAdV-2 is most closely related to GoAdV-4
    corecore