10 research outputs found

    Finnish flies of the family Therevidae

    Get PDF
    An illustrated key for the 17 Finnish species of Therevidae is presented that includes six species recorded from neighbouring areas. Distributions of the Finnish species are discussed and presented in maps; evaluations concerning the threatenedness status of Finnish species are included

    Checklist of the Diptera superfamilies Tephritoidea and Sciomyzoidea of Finland (Insecta)

    Get PDF
    A revised checklist of the flies of superfamilies Tephritoidea and Sciomyzoidea of Finland is provided. The following families are covered: Eurygnathomyiidae, Lonchaeidae, Neottiophilidae, Pallopteridae, Piophilidae, Platystomatidae, Tephritidae, Ulidiidae (Tephritoidea); Coelopidae, Dryomyzidae, Heterocheilidae, Phaeomyiidae, Sciomyzidae, Sepsidae (Sciomyzoidea).Peer reviewe

    A molecular-based identification resource for the arthropods of Finland

    Get PDF
    Publisher Copyright: © 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.Peer reviewe

    First records of Palaearctic Agromyzidae (Diptera) from 40 countries and major islands

    No full text
    First records of 151 species in the family Agromyzidae are presented for 40 countries and major islands in the Palaearctic Region (Russia being split into four subregions): from Afghanistan (1 sp.), Albania (15 spp.), Algeria (1 sp.), Andorra (2 spp.), Armenia (4 spp.), Austria (14 spp.), Balearic Islands (4 spp.), Canary Islands (2 spp.), China - Palaearctic part (2 spp.), Corsica (5 spp.), Crete (6 spp.), Croatia (16 spp.), Czech Republic (4 spp.), Dodekanese Islands incl. Rhodes (5 spp.), Egypt (1 sp.), European Russia (2 spp.), Finland (12 spp.), France (1 sp.), Georgia (1 sp.), Germany (14 spp.), Great Britain (2 spp.), Greece (4 spp.), Iceland (1 sp.), Iran (8 spp.), Israel (1 sp.), Italy (12 spp.), Jordan (6 spp.), Kyrgyzstan (6 spp.), Lithuania (2 spp.), Macedonia (2 spp.), Mongolia (2 spp.), Morocco (6 spp.), Netherlands (1 sp.), Norway (3 spp.), Oman (1 sp.), Poland (1 sp.), West Siberia (1 sp.), East Sibiria (3 spp.), Kamchatka (5 spp.), Sardinia (1 sp.), Slovakia (4 spp.), South Korea (13 spp.), Spain (10 spp.), Sweden (7 spp.), Switzerland (5 spp.) and Turkey (1 sp.). For a few species morphological details or plant genera from the collecting localities are added as possible host plants. Phytomyza parvicella (Coquillett, 1902) exhibits an extremely disjunct distribution, occurring in the high Arctic from Alaska to west Greenland and on the highest mountains of Germany and Poland. Other rare species with Boreo-alpine disjunctions are recorded. Cerodontha (Cerodontha) phragmitophila Hering, 1935 reached a tiny artificial patch of its host plant within the Sahara sand desert. The thermophilic mediterranean Phytoliriomyza pectoralis (Becker, 1908) was detected on the Swedish sun-blessed island Öland. Chromatomyia obscuriceps (Hendel, 1936) (emerged from Triticum crop) is specified as a valid species occurring from Iceland to Kamchatka. A new definition for Chromatomyia nigra (Meigen, 1830) sensu stricto is presented. The American Amauromyza (Cephalomyza) abnormalis (Malloch, 1913), a possible agent against the harmful neophyte Amaranthus retroflexus, was detected for the first time in the Palaearctic Region. Gnaphalium is attributed as a first detected host plant genus of Phytoliriomyza venustula Spencer, 1976

    A molecular‐based identification resource for the arthropods of Finland

    Get PDF
    To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this paper, we 1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), 2) publish this library, and 3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1,000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi). Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.peerReviewe
    corecore