33 research outputs found

    Performance analysis of packet layer FEC codes and interleaving in FSO channels

    Get PDF
    The combination of forward-error-correction (FEC) and interleaving can be used to improve free-space optical (FSO) communication systems. Recent research has optimized the codeword length and interleaving depth under the assumption of a fixed buffering size, however, how the buffering size influences the system performance remains unsolved. This paper models the system performance as a function of buffering size and FEC recovery threshold, which allows system designers to determine optimum parameters in consideration of the overhead. The modelling is based on statistics of temporal features of correct data reception and burst error length through the measurement of the channel good time and outage time. The experimental results show good coherence with the theoretical values. This method can also be applied in other channels if a Continuous-Time-Markov-Chain (CTMC) model of the channel can be derive

    Combined Quantitative X-ray Diffraction, Scanning Electron Microscopy, and Transmission Electron Microscopy Investigations of Crystal Evolution in CaO–Al2O3–SiO2–TiO2–ZrO2–Nd2O3–Na2O System

    Get PDF
    Glass-ceramics, with a specific crystalline phase assembly, can combine the advantages of glass and ceramic and avoid their disadvantages. In this study, both cubic-zirconia and zirconolite-based glass-ceramics were obtained by the crystallization of SiO2-CaO-Al2O3-TiO2-ZrO2-Nd2O3-Na2O glass. Results show that all samples underwent a phase transformation from cubic-zirconia to zirconolite when crystallized at 900, 950, and 1000 °C. The size of the cubic-zirconia crystal could be controlled by temperature and dwelling time. Both cubic-zirconia and zirconolite crystals/particles show dendrite shapes, but with different dendrite branching. The dendrite cubic-zirconia showed highly oriented growth. Scanning electron microscopy images show that the branches of the cubic-zirconia crystal had a snowflake-like appearance, while those in zirconolite were composed of many individual crystals. Rietveld quantitative analysis revealed that the maximum amount of zirconolite was ∼19 wt %. A two-stage crystallization method was used to obtain different microstructures of zirconolite-based glass-ceramic. The amount of zirconolite remained approximately 19 wt %, but the individual crystals were smaller and more homogeneously dispersed in the dendrite structure than those obtained from one-stage crystallization. This process-control feature can result in different sizes and morphologies of cubic-zirconia and zirconolite crystals to facilitate the design of glass-ceramic waste forms for nuclear wastes

    Bioorthogonal Oxime Ligation Mediated in vivo Cancer Targeting

    Get PDF
    Current cancer targeting relying on specific biological interaction between the cell surface antigen and respective antibody or its analogue has proven to be effective in the treatment of different cancers; however, this strategy has its own limitations, such as the heterogeneity of cancer cells and immunogenicity of the biomacromolecule binding ligands. Bioorthogonal chemical conjugation has emerged as an attractive alternative to biological interaction for in vivo cancer targeting. Here, we report an in vivo cancer targeting strategy mediated by bioorthogonal oxime ligation. An oxyamine group, the artificial target, is introduced onto 4T1 murine breast cancer cells through liposome delivery and fusion. Poly(ethylene glycol)-polylactide (PEG-PLA) nanoparticles (NPs) are surface-functionalized with aldehyde groups as targeting ligands. The improved in vivo cancer targeting of PEG-PLA NPs is achieved through specific and efficient chemical reaction between the oxyamine and aldehyde groups

    Pamidronate Functionalized Nanoconjugates for Targeted Therapy of Focal Skeletal Malignant Osteolysis

    No full text
    Malignant osteolysis associated with inoperable primary bone tumors and multifocal skeletal metastases remains a challenging clinical problem in cancer patients. Nanomedicine that is able to target and deliver therapeutic agents to diseased bone sites could potentially provide an effective treatment option for different types of skeletal cancers. Here, we report the development of polylactide nanoparticles (NPs) loaded with doxorubicin (Doxo) and coated with bone-seeking pamidronate (Pam) for the targeted treatment of malignant skeletal tumors. In vivo biodistribution of radiolabeled targeted Pam-NPs demonstrated enhanced bone tumor accumulation and prolonged retention compared with nontargeted NPs. In a murine model of focal malignant osteolysis, Pam-functionalized, Doxo-loaded NPs (Pam-Doxo-NPs) significantly attenuated localized osteosarcoma (OS) progression compared with nontargeted Doxo-NPs. Importantly, we report on the first evaluation to our knowlege of Pam-Doxo-NPs in dogs with OS, which possess tumors of anatomic size and physiology comparable to those in humans. The repeat dosing of Pam-Doxo-NPs in dogs with naturally occurring OS indicated the therapeutic was well tolerated without hematologic, nonhematologic, and cardiac toxicities. By nuclear scintigraphy, the biodistribution of Pam-Doxo-NPs demonstrated malignant bone-targeting capability and exerted measurable anticancer activities as confirmed with percent tumor necrosis histopathology assessment
    corecore